miopen_rnn_backward.h 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839
  1. #pragma once
  2. // @generated by torchgen/gen.py from Function.h
  3. #include <ATen/Context.h>
  4. #include <ATen/DeviceGuard.h>
  5. #include <ATen/TensorUtils.h>
  6. #include <ATen/TracerMode.h>
  7. #include <ATen/core/Generator.h>
  8. #include <ATen/core/Reduction.h>
  9. #include <ATen/core/Tensor.h>
  10. #include <c10/core/Scalar.h>
  11. #include <c10/core/Storage.h>
  12. #include <c10/core/TensorOptions.h>
  13. #include <c10/util/Deprecated.h>
  14. #include <c10/util/Optional.h>
  15. #include <ATen/ops/miopen_rnn_backward_ops.h>
  16. namespace at {
  17. // aten::miopen_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[])
  18. inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,::std::vector<at::Tensor>> miopen_rnn_backward(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
  19. return at::_ops::miopen_rnn_backward::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask);
  20. }
  21. // aten::miopen_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
  22. inline void miopen_rnn_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask) {
  23. return at::_ops::miopen_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
  24. }
  25. // aten::miopen_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()
  26. inline void miopen_rnn_backward_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, const at::Tensor & output, const c10::optional<at::Tensor> & grad_output, const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, const at::Tensor & reserve, ::std::array<bool,4> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::TensorList out3) {
  27. return at::_ops::miopen_rnn_backward_out::call(input, weight, weight_stride0, weight_buf, hx, cx, output, grad_output, grad_hy, grad_cy, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, reserve, output_mask, out0, out1, out2, out3);
  28. }
  29. }