miopen_rnn.h 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839
  1. #pragma once
  2. // @generated by torchgen/gen.py from Function.h
  3. #include <ATen/Context.h>
  4. #include <ATen/DeviceGuard.h>
  5. #include <ATen/TensorUtils.h>
  6. #include <ATen/TracerMode.h>
  7. #include <ATen/core/Generator.h>
  8. #include <ATen/core/Reduction.h>
  9. #include <ATen/core/Tensor.h>
  10. #include <c10/core/Scalar.h>
  11. #include <c10/core/Storage.h>
  12. #include <c10/core/TensorOptions.h>
  13. #include <c10/util/Deprecated.h>
  14. #include <c10/util/Optional.h>
  15. #include <ATen/ops/miopen_rnn_ops.h>
  16. namespace at {
  17. // aten::miopen_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)
  18. inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> miopen_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
  19. return at::_ops::miopen_rnn::call(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state);
  20. }
  21. // aten::miopen_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
  22. inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> miopen_rnn_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state) {
  23. return at::_ops::miopen_rnn_out::call(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
  24. }
  25. // aten::miopen_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))
  26. inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> miopen_rnn_outf(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4) {
  27. return at::_ops::miopen_rnn_out::call(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state, out0, out1, out2, out3, out4);
  28. }
  29. }