12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- #pragma once
- // @generated by torchgen/gen.py from Function.h
- #include <ATen/Context.h>
- #include <ATen/DeviceGuard.h>
- #include <ATen/TensorUtils.h>
- #include <ATen/TracerMode.h>
- #include <ATen/core/Generator.h>
- #include <ATen/core/Reduction.h>
- #include <ATen/core/Tensor.h>
- #include <c10/core/Scalar.h>
- #include <c10/core/Storage.h>
- #include <c10/core/TensorOptions.h>
- #include <c10/util/Deprecated.h>
- #include <c10/util/Optional.h>
- #include <ATen/ops/embedding_dense_backward_ops.h>
- namespace at {
- // aten::embedding_dense_backward(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq) -> Tensor
- inline at::Tensor embedding_dense_backward(const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) {
- return at::_ops::embedding_dense_backward::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq);
- }
- namespace symint {
- template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
- at::Tensor embedding_dense_backward(const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) {
- return at::_ops::embedding_dense_backward::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq);
- }
- }
- // aten::embedding_dense_backward(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq) -> Tensor
- inline at::Tensor embedding_dense_backward_symint(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq) {
- return at::_ops::embedding_dense_backward::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq);
- }
- namespace symint {
- template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
- at::Tensor embedding_dense_backward(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq) {
- return at::_ops::embedding_dense_backward::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq);
- }
- }
- // aten::embedding_dense_backward.out(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, *, Tensor(a!) out) -> Tensor(a!)
- inline at::Tensor & embedding_dense_backward_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) {
- return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
- }
- namespace symint {
- template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
- at::Tensor & embedding_dense_backward_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq) {
- return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
- }
- }
- // aten::embedding_dense_backward.out(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, *, Tensor(a!) out) -> Tensor(a!)
- inline at::Tensor & embedding_dense_backward_outf(const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq, at::Tensor & out) {
- return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
- }
- namespace symint {
- template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
- at::Tensor & embedding_dense_backward_outf(const at::Tensor & grad_output, const at::Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq, at::Tensor & out) {
- return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
- }
- }
- // aten::embedding_dense_backward.out(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, *, Tensor(a!) out) -> Tensor(a!)
- inline at::Tensor & embedding_dense_backward_symint_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq) {
- return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
- }
- namespace symint {
- template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
- at::Tensor & embedding_dense_backward_out(at::Tensor & out, const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq) {
- return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
- }
- }
- // aten::embedding_dense_backward.out(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, *, Tensor(a!) out) -> Tensor(a!)
- inline at::Tensor & embedding_dense_backward_symint_outf(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq, at::Tensor & out) {
- return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
- }
- namespace symint {
- template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
- at::Tensor & embedding_dense_backward_outf(const at::Tensor & grad_output, const at::Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq, at::Tensor & out) {
- return at::_ops::embedding_dense_backward_out::call(grad_output, indices, num_weights, padding_idx, scale_grad_by_freq, out);
- }
- }
- }
|