_lstm_mps.h 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839
  1. #pragma once
  2. // @generated by torchgen/gen.py from Function.h
  3. #include <ATen/Context.h>
  4. #include <ATen/DeviceGuard.h>
  5. #include <ATen/TensorUtils.h>
  6. #include <ATen/TracerMode.h>
  7. #include <ATen/core/Generator.h>
  8. #include <ATen/core/Reduction.h>
  9. #include <ATen/core/Tensor.h>
  10. #include <c10/core/Scalar.h>
  11. #include <c10/core/Storage.h>
  12. #include <c10/core/TensorOptions.h>
  13. #include <c10/util/Deprecated.h>
  14. #include <c10/util/Optional.h>
  15. #include <ATen/ops/_lstm_mps_ops.h>
  16. namespace at {
  17. // aten::_lstm_mps(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor)
  18. inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _lstm_mps(const at::Tensor & input, at::TensorList hx, at::TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
  19. return at::_ops::_lstm_mps::call(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first);
  20. }
  21. // aten::_lstm_mps.out(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4, Tensor(f!) out5) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!), Tensor(f!))
  22. inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _lstm_mps_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, at::Tensor & out5, const at::Tensor & input, at::TensorList hx, at::TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
  23. return at::_ops::_lstm_mps_out::call(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first, out0, out1, out2, out3, out4, out5);
  24. }
  25. // aten::_lstm_mps.out(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4, Tensor(f!) out5) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!), Tensor(f!))
  26. inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &,at::Tensor &> _lstm_mps_outf(const at::Tensor & input, at::TensorList hx, at::TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, at::Tensor & out3, at::Tensor & out4, at::Tensor & out5) {
  27. return at::_ops::_lstm_mps_out::call(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first, out0, out1, out2, out3, out4, out5);
  28. }
  29. }