123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- #pragma once
- #include <ATen/core/Tensor.h>
- #include <ATen/core/List.h>
- #include <ATen/TensorOperators.h>
- #include <c10/util/irange.h>
- #include <algorithm>
- #include <cmath>
- #ifndef AT_PER_OPERATOR_HEADERS
- #include <ATen/Functions.h>
- #include <ATen/NativeFunctions.h>
- #else
- #include <ATen/ops/quantize_per_tensor_native.h>
- #include <ATen/ops/quantize_per_channel_native.h>
- #include <ATen/ops/zeros.h>
- #endif
- namespace quant_utils {
- namespace {
- float RawUint16ToFp16(unsigned short value) {
- // Convert raw 16 bits half precision floating point number
- // to single precision floating point number.
- const unsigned short sign_bits = value >> 15;
- const unsigned short exponent_bits = value >> 10 & 0x1f;
- const unsigned short significand_bits = value & 0x3ff;
- const float sign = sign_bits ? -1 : 1;
- const float significand =
- 1 + significand_bits * 0.0009765625f; // 0.0009765625f = 0x1p-10 = 2^-10;
- const float exponent = exponent_bits - 0xf;
- return sign * std::ldexp(significand, exponent);
- }
- template <typename T>
- bool CheckAndSaturate(T max_val, T* element) {
- if (*element > max_val) {
- *element = max_val;
- return true;
- }
- if (*element < -max_val) {
- *element = -max_val;
- return true;
- }
- return false;
- }
- }
- using namespace std;
- // A structure to hold quantization parameters 'scale' and 'zero_point'.
- // The meaning of these values is as the constants in the quantization equation
- //
- // real_value = scale * (quantized_value - zero_point)
- //
- // In other words, 'zero_point' is the quantized value that corresponds
- // to the real value 0, and 'scale' is the difference of real values
- // corresponding to consecutive quantized values.
- struct TensorQuantizationParams {
- double scale;
- std::int32_t zero_point;
- int precision;
- };
- // Use fp16_min as the small scale cutoff because we don't want to use scales in
- // fp16 subnormal range. This is to be consistent with Glow and FakeLowP
- // implementation for NNPI.
- constexpr float SMALL_SCALE_THRESHOLD = 6.1e-5f;
- // Following implementation should be identical to fbgemm::ChooseQuantizationParams
- inline TensorQuantizationParams ChooseQuantizationParams(
- float min,
- float max,
- int32_t qmin,
- int32_t qmax,
- bool preserve_sparsity = false,
- bool force_scale_power_of_two = false,
- bool reduce_range = false) {
- TORCH_CHECK(
- min <= max,
- "In ChooseQuantizationParams, min should be less than or equal to max");
- if (reduce_range) {
- qmin = qmin/2;
- qmax = qmax/2;
- }
- if (min < 0 && max > 0 && preserve_sparsity) {
- int symmetric_qmin = -((qmax - qmin) / 2 + 1);
- int symmetric_qmax = (qmax - qmin) / 2;
- double max_scale =
- std::max(fabs(min / symmetric_qmin), fabs(max / symmetric_qmax));
- min = max_scale * symmetric_qmin;
- max = max_scale * symmetric_qmax;
- }
- // We extend the [min, max] interval to ensure that it contains 0.
- // Otherwise, we would not meet the requirement that 0 be an exactly
- // representable value.
- min = std::min(min, 0.f);
- max = std::max(max, 0.f);
- TORCH_CHECK(
- qmin < qmax,
- "In ChooseQuantizationParams, qmin should be less than qmax");
- // Use double precision for intermediate computation but use single precision
- // in final number to reflect the actual number used during quantization.
- double scale = (static_cast<double>(max) - min) / (qmax - qmin);
- // If scale is 0 or too small so its reciprocal is infinity, we arbitrary
- // adjust the scale to 0.1 . We want to avoid scale's reciprocal being
- // infinity because some of fbgemm code pre-computes scale's reciprocal to do
- // multiplication instead of division in the time critical part of code.
- if (float(scale) == 0.0f || std::isinf(1.0f / float(scale))) {
- scale = 0.1;
- }
- TORCH_CHECK(scale > 0, "quantization scale should be > 0");
- if (force_scale_power_of_two) {
- if (scale < 1) {
- scale = 1.0 / (1 << static_cast<int>(floor(log(1.0 / scale) / log(2))));
- } else {
- scale = 1 << static_cast<int>(ceil(log(scale) / log(2)));
- }
- }
- // Cut off small scale
- if (scale < SMALL_SCALE_THRESHOLD) {
- float org_scale = scale;
- scale = SMALL_SCALE_THRESHOLD;
- // Adjust the min and max based on the new scale
- if (min == 0.0f) {
- max = SMALL_SCALE_THRESHOLD * (qmax - qmin);
- } else if (max == 0.0f) {
- min = -SMALL_SCALE_THRESHOLD * (qmax - qmin);
- } else {
- float amplifier = SMALL_SCALE_THRESHOLD / org_scale;
- min *= amplifier;
- max *= amplifier;
- }
- }
- // Zero-point computation.
- // First the initial floating-point computation. The zero-point can be
- // determined from solving an affine equation for any known pair
- // (real value, corresponding quantized value).
- // We know two such pairs: (rmin, qmin) and (rmax, qmax).
- // The arithmetic error on the zero point computed from either pair
- // will be roughly machine_epsilon * (sum of absolute values of terms)
- // so we want to use the variant that adds the smaller terms.
- double zero_point_from_min = qmin - min / static_cast<double>(scale);
- double zero_point_from_max = qmax - max / static_cast<double>(scale);
- double zero_point_from_min_error =
- std::abs(qmin) - std::abs(min / static_cast<double>(scale));
- double zero_point_from_max_error =
- std::abs(qmax) - std::abs(max / static_cast<double>(scale));
- double initial_zero_point =
- zero_point_from_min_error < zero_point_from_max_error
- ? zero_point_from_min
- : zero_point_from_max;
- // for symmetric quantization (preserve_sparsity == true), we force zero_point
- // to be a middle value between qmin and qmax.
- // If either min or max is 0, then we just use 0 as zero_point.
- if (min < 0 && max > 0 && preserve_sparsity) {
- initial_zero_point = static_cast<double>(qmin + qmax) / 2;
- }
- // Now we need to nudge the zero point to be an integer
- // (our zero points are integer, and this is motivated by the requirement
- // to be able to represent the real value "0" exactly as a quantized value,
- // which is required in multiple places, for example in Im2col with zero
- // padding).
- int32_t nudged_zero_point = 0;
- if (initial_zero_point < qmin) {
- nudged_zero_point = qmin;
- } else if (initial_zero_point > qmax) {
- nudged_zero_point = qmax;
- } else {
- nudged_zero_point = nearbyint(initial_zero_point);
- }
- TensorQuantizationParams result;
- result.scale = scale;
- result.zero_point = nudged_zero_point;
- return result;
- }
- // This function helps to convert the Conv1D dimensions usable by the Conv2d op.
- constexpr int64_t kConv1dSqueezeDim = 0;
- static C10_UNUSED torch::List<int64_t> MakeArgForConv1d(const torch::List<int64_t>& arg,
- int64_t base_value) {
- TORCH_CHECK(!arg.empty(), "Argument must have elements.");
- torch::List<int64_t> result({arg.get(0), base_value});
- if (arg.size() == 1) {
- result[1] = arg.get(0);
- } else {
- result[1] = arg.get(1);
- }
- result[kConv1dSqueezeDim] = base_value;
- return result;
- }
- // The range for using FP16 quantization of weights requires that the elements
- // should be in the range of [5.96e-8, 65504]. If it is out of range, then the
- // number will be saturated to max or min representable values by FP16.
- inline void HandleWeightsSaturation(int64_t N, float* weight) {
- const float kFp16Max = RawUint16ToFp16(0x7BFF);
- bool found_out_of_range = false;
- for (const auto i : c10::irange(N)) {
- bool saturate = CheckAndSaturate<float>(kFp16Max, weight + i);
- if (saturate) {
- found_out_of_range = true;
- }
- }
- if (found_out_of_range) {
- TORCH_WARN("FOUND weight out of range ");
- }
- }
- // Util function for quantizing bias.
- inline at::Tensor QuantizeBias(
- bool is_per_channel,
- const at::Tensor& bias,
- const at::Tensor& weight_contig,
- double input_scale) {
- at::Tensor qbias;
- if (is_per_channel) {
- auto bias_quant_scales =
- weight_contig.q_per_channel_scales() * input_scale;
- auto bias_zp = at::zeros(bias_quant_scales.sizes(), c10::kInt);
- qbias = at::native::quantize_per_channel(
- bias, bias_quant_scales, bias_zp, 0, c10::kQInt32);
- } else {
- qbias = at::native::quantize_per_tensor(
- bias, weight_contig.q_scale() * input_scale, 0, c10::kQInt32);
- }
- return qbias;
- }
- } // namespace quant_utils
|