123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- #pragma once
- #include <ATen/cuda/CUDAContext.h>
- #include <ATen/cuda/detail/KernelUtils.h>
- #include <ATen/cuda/detail/IndexUtils.cuh>
- #include <ATen/cuda/detail/TensorInfo.cuh>
- #include <c10/macros/Macros.h>
- namespace at {
- namespace native {
- using namespace at::cuda::detail;
- // Kernel for fast unfold+copy on volumes
- template <typename T>
- __global__ void vol2col_kernel(
- const int64_t n,
- const T* data_vol,
- const int depth,
- const int height,
- const int width,
- const int ksize_t,
- const int ksize_h,
- const int ksize_w,
- const int pad_t,
- const int pad_h,
- const int pad_w,
- const int stride_t,
- const int stride_h,
- const int stride_w,
- const int dilation_t,
- const int dilation_h,
- const int dilation_w,
- const int depth_col,
- const int height_col,
- const int width_col,
- T* data_col) {
- CUDA_KERNEL_LOOP(index, n) {
- auto w_out = index % width_col;
- index /= width_col;
- auto h_out = index % height_col;
- index /= height_col;
- auto t_out = index % depth_col;
- auto channel_in = index / depth_col;
- auto channel_out = channel_in * ksize_t * ksize_h * ksize_w;
- auto t_in = t_out * stride_t - pad_t;
- auto h_in = h_out * stride_h - pad_h;
- auto w_in = w_out * stride_w - pad_w;
- data_col +=
- ((channel_out * depth_col + t_out) * height_col + h_out) * width_col +
- w_out;
- data_vol += ((channel_in * depth + t_in) * height + h_in) * width + w_in;
- for (int i = 0; i < ksize_t; ++i) {
- for (int j = 0; j < ksize_h; ++j) {
- for (int k = 0; k < ksize_w; ++k) {
- auto t = t_in + i * dilation_t;
- auto h = h_in + j * dilation_h;
- auto w = w_in + k * dilation_w;
- *data_col = (t >= 0 && h >= 0 && w >= 0 && t < depth && h < height &&
- w < width)
- ? data_vol
- [i * dilation_t * height * width + j * dilation_h * width +
- k * dilation_w]
- : static_cast<T>(0);
- data_col += depth_col * height_col * width_col;
- }
- }
- }
- }
- }
- template <typename T>
- void vol2col(
- cudaStream_t stream,
- const T* data_vol,
- const int channels,
- const int depth,
- const int height,
- const int width,
- const int depth_col,
- const int height_col,
- const int width_col,
- const int ksize_t,
- const int ksize_h,
- const int ksize_w,
- const int pad_t,
- const int pad_h,
- const int pad_w,
- const int stride_t,
- const int stride_h,
- const int stride_w,
- const int dilation_t,
- const int dilation_h,
- const int dilation_w,
- T* data_col) {
- // We are going to launch channels * depth_col * height_col * width_col
- // kernels, each kernel responsible for copying a single-channel grid.
- // We cast an operand to int64 so that the product will not overflow
- const auto num_kernels = static_cast<int64_t>(channels) * depth_col * height_col * width_col;
- // Launch
- vol2col_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>>(
- num_kernels,
- data_vol,
- depth,
- height,
- width,
- ksize_t,
- ksize_h,
- ksize_w,
- pad_t,
- pad_h,
- pad_w,
- stride_t,
- stride_h,
- stride_w,
- dilation_t,
- dilation_h,
- dilation_w,
- depth_col,
- height_col,
- width_col,
- data_col);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- }
- template <typename T, typename accT>
- __global__ void vol2im_kernel(
- const int64_t n,
- const T* data_col,
- const unsigned depth,
- const unsigned height,
- const unsigned width,
- const unsigned channels,
- const unsigned kernel_t,
- const unsigned kernel_h,
- const unsigned kernel_w,
- const unsigned pad_t,
- const unsigned pad_h,
- const unsigned pad_w,
- const unsigned stride_t,
- const unsigned stride_h,
- const unsigned stride_w,
- const unsigned dilation_t,
- const unsigned dilation_h,
- const unsigned dilation_w,
- const unsigned depth_col,
- const unsigned height_col,
- const unsigned width_col,
- T* data_vol) {
- CUDA_KERNEL_LOOP(index, n) {
- accT val = static_cast<accT>(0);
- const auto w_im = index % width + pad_w;
- const auto h_im = (index / width) % height + pad_h;
- const auto t_im = (index / width / height) % depth + pad_t;
- const auto c_im = index / (width * height * depth);
- auto kernel_extent_w = (kernel_w - 1) * dilation_w + 1;
- auto kernel_extent_h = (kernel_h - 1) * dilation_h + 1;
- auto kernel_extent_t = (kernel_t - 1) * dilation_t + 1;
- // compute the start and end of the output
- const auto w_col_start =
- (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1;
- const auto w_col_end = std::min(w_im / stride_w + 1, width_col);
- const auto h_col_start =
- (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1;
- const auto h_col_end = std::min(h_im / stride_h + 1, height_col);
- const auto t_col_start =
- (t_im < kernel_extent_t) ? 0 : (t_im - kernel_extent_t) / stride_t + 1;
- const auto t_col_end = std::min(t_im / stride_t + 1, depth_col);
- // TODO: use LCM of stride and dilation to avoid unnecessary loops
- for (unsigned t_col = t_col_start; t_col < t_col_end; t_col += 1) {
- for (unsigned h_col = h_col_start; h_col < h_col_end; h_col += 1) {
- for (unsigned w_col = w_col_start; w_col < w_col_end; w_col += 1) {
- uint64_t t_k = (t_im - t_col * stride_t);
- uint64_t h_k = (h_im - h_col * stride_h);
- uint64_t w_k = (w_im - w_col * stride_w);
- if (t_k % dilation_t == 0 && h_k % dilation_h == 0 &&
- w_k % dilation_w == 0) {
- t_k /= dilation_t;
- h_k /= dilation_h;
- w_k /= dilation_w;
- const int64_t idx_k =
- ((c_im * kernel_t + t_k) * kernel_h + h_k) * kernel_w + w_k;
- const int64_t data_col_index =
- ((idx_k * depth_col + t_col) *
- height_col + h_col) *
- width_col + w_col;
- val += data_col[data_col_index];
- }
- }
- }
- }
- data_vol[index] = static_cast<T>(val);
- }
- }
- template <typename T, typename accT>
- void col2vol(
- cudaStream_t stream,
- const T* data_col,
- const int64_t channels,
- const int64_t depth,
- const int64_t height,
- const int64_t width,
- const int64_t output_depth,
- const int64_t output_height,
- const int64_t output_width,
- const int64_t patch_t,
- const int64_t patch_h,
- const int64_t patch_w,
- const int64_t pad_t,
- const int64_t pad_h,
- const int64_t pad_w,
- const int64_t stride_t,
- const int64_t stride_h,
- const int64_t stride_w,
- const int64_t dilation_t,
- const int64_t dilation_h,
- const int64_t dilation_w,
- T* data_vol) {
- const auto num_kernels = channels * depth * height * width;
- auto check_fits_in_unsigned =
- [](int64_t val, const char * name) {
- constexpr auto umax = std::numeric_limits<unsigned>::max();
- TORCH_CHECK(val >= 0 && val <= umax,
- name, " must fit in a 32-bit unsigned value");
- };
- check_fits_in_unsigned(num_kernels, "input size");
- check_fits_in_unsigned(
- channels * patch_t * patch_h * patch_w, "channels x kernel size");
- // To avoid involving atomic operations, we will launch one kernel per
- // bottom dimension, and then in the kernel add up the top dimensions.
- vol2im_kernel<T, accT>
- <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>>(
- num_kernels,
- data_col,
- depth,
- height,
- width,
- channels,
- patch_t,
- patch_h,
- patch_w,
- pad_t,
- pad_h,
- pad_w,
- stride_t,
- stride_h,
- stride_w,
- dilation_t,
- dilation_h,
- dilation_w,
- output_depth,
- output_height,
- output_width,
- data_vol);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- }
- } // namespace native
- } // namespace at
|