123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- #pragma once
- #include <ATen/core/TensorAccessor.h>
- #include <ATen/cuda/Atomic.cuh>
- #include <c10/util/ArrayRef.h>
- #include <c10/util/Optional.h>
- #include <c10/util/SmallVector.h>
- #include <c10/util/OptionalArrayRef.h>
- #include <math.h>
- namespace at {
- namespace native {
- namespace upsample {
- // TODO: Remove duplicate declaration.
- TORCH_API c10::SmallVector<int64_t, 3> compute_output_size(
- c10::IntArrayRef input_size, // Full input tensor size.
- at::OptionalIntArrayRef output_size,
- c10::optional<c10::ArrayRef<double>> scale_factors);
- } // namespace upsample
- namespace upsample_cuda {
- // TODO: Remove duplication with Upsample.h (CPU).
- inline c10::optional<double> get_scale_value(c10::optional<c10::ArrayRef<double>> scales, int idx) {
- if (!scales) {
- return nullopt;
- }
- return scales->at(idx);
- }
- } // namespace upsample_cuda
- /* TODO: move this to a common place */
- template <typename scalar_t>
- __device__ inline scalar_t min(scalar_t a, scalar_t b) {
- return a < b ? a : b;
- }
- template <typename scalar_t>
- __device__ inline scalar_t max(scalar_t a, scalar_t b) {
- return a > b ? a : b;
- }
- // NOTE [ Nearest neighbor upsampling kernel implementation ]
- //
- // The nearest neighbor upsampling kernel implementation is symmetrical as
- // expected. We launch kernels with threads mapping to destination tensors where
- // kernels write data to, each thread reads data from the source tensor, this
- // means:
- // 1. In the forward kernel,
- // src_xxx refers to properties of input tensors;
- // dst_xxx refers to properties of output tensors;
- // scale_factor is the ratio of src_size to dst_size;
- // 2. In the backward kernel,
- // src_xxx refers to properties of grad_output tensors;
- // dst_xxx refers to properties of grad_input tensors;
- // scale_factor is the ratio of src_size to dst_size;
- //
- // Because of this, we need to take the reciprocal of the scale defined by
- // upsample layer during forward path. The motivation is to avoid slow
- // division in the kernel code, so we can use faster multiplication instead.
- // This is not necessary during backward path, since the scale_factor is already
- // the reciprocal of corresponding scale_factor used in the forward path due to
- // the swap of source and destination tensor.
- //
- // Similarly, since the mapping from grad_input to grad_output during backward
- // is the reverse of the mapping of output to input, we need to have opposite
- // mapping functions to compute the source index.
- // see NOTE [ Nearest neighbor upsampling kernel implementation ]
- template <typename accscalar_t>
- __host__ __forceinline__ static accscalar_t compute_scales_value(
- const c10::optional<double> scale,
- int64_t src_size,
- int64_t dst_size) {
- // FIXME: remove magic > 0 after we ensure no models were serialized with -1 defaults.
- return (scale.has_value() && scale.value() > 0.) ? (accscalar_t)(1.0 / scale.value())
- : (accscalar_t)src_size / dst_size;
- }
- // see NOTE [ Nearest neighbor upsampling kernel implementation ]
- template <typename accscalar_t>
- __host__ __forceinline__ static accscalar_t compute_scales_value_backwards(
- const c10::optional<double> scale,
- int64_t src_size,
- int64_t dst_size) {
- // FIXME: remove magic > 0 after we ensure no models were serialized with -1 defaults.
- return (scale.has_value() && scale.value() > 0.) ? (accscalar_t)scale.value()
- : (accscalar_t)src_size / dst_size;
- }
- template <typename accscalar_t>
- __host__ __forceinline__ static accscalar_t area_pixel_compute_scale(
- int input_size,
- int output_size,
- bool align_corners,
- const c10::optional<double> scale) {
- if(align_corners) {
- if(output_size > 1) {
- return (accscalar_t)(input_size - 1) / (output_size - 1);
- }
- else {
- return static_cast<accscalar_t>(0);
- }
- }
- else{
- return compute_scales_value<accscalar_t>(scale, input_size, output_size);
- }
- }
- template <typename accscalar_t>
- __device__ __forceinline__ static accscalar_t area_pixel_compute_source_index(
- accscalar_t scale,
- int dst_index,
- bool align_corners,
- bool cubic) {
- if (align_corners) {
- return scale * dst_index;
- } else {
- accscalar_t src_idx = scale * (dst_index + static_cast<accscalar_t>(0.5)) -
- static_cast<accscalar_t>(0.5);
- // See Note[Follow Opencv resize logic]
- return (!cubic && src_idx < static_cast<accscalar_t>(0))
- ? static_cast<accscalar_t>(0)
- : src_idx;
- }
- }
- // see NOTE [ Nearest neighbor upsampling kernel implementation ]
- __device__ __forceinline__ static int nearest_neighbor_compute_source_index(
- const float scale,
- int dst_index,
- int input_size) {
- // index_f32 = (output_index) * scale
- // input_index = round(index_f32)
- // Same as a buggy OpenCV INTER_NEAREST
- // We keep this method for BC and consider as deprecated.
- // See nearest_neighbor_exact_compute_source_index as replacement
- const int src_index =
- min(static_cast<int>(floorf((dst_index) * scale)), input_size - 1);
- return src_index;
- }
- __device__ __forceinline__ static int nearest_neighbor_exact_compute_source_index(
- const float scale,
- int dst_index,
- int input_size) {
- // index_f32 = (output_index + 0.5) * scale - 0.5
- // input_index = round(index_f32)
- // Same as Pillow and Scikit-Image/Scipy ndi.zoom
- const int src_index =
- min(static_cast<int>(floorf((dst_index + static_cast<float>(0.5)) * scale)), input_size - 1);
- return src_index;
- }
- // see NOTE [ Nearest neighbor upsampling kernel implementation ]
- __device__ __forceinline__ static int nearest_neighbor_bw_compute_source_index(
- const float scale,
- int dst_index,
- int output_size) {
- // Equivalent to buggy OpenCV INTER_NEAREST
- // We keep this method for BC and consider as deprecated.
- // See nearest_neighbor_exact_bw_compute_source_index as replacement
- const int src_index =
- min(static_cast<int>(ceilf(dst_index * scale)), output_size);
- return src_index;
- }
- // see NOTE [ Nearest neighbor upsampling kernel implementation ]
- __device__ __forceinline__ static int nearest_neighbor_exact_bw_compute_source_index(
- const float scale,
- int dst_index,
- int output_size) {
- // Equivalent to Pillow and Scikit-Image/Scipy ndi.zoom
- const int src_index =
- min(static_cast<int>(ceilf(dst_index * scale - static_cast<float>(0.5))), output_size);
- return src_index;
- }
- /* Used by UpSampleBicubic2d.cu */
- template <typename scalar_t>
- __device__ __forceinline__ static scalar_t upsample_get_value_bounded(
- const PackedTensorAccessor64<scalar_t, 4>& data,
- int batch,
- int channel,
- int height,
- int width,
- int y,
- int x) {
- int access_y = max(min(y, height - 1), 0);
- int access_x = max(min(x, width - 1), 0);
- return data[batch][channel][access_y][access_x];
- }
- /* Used by UpSampleBicubic2d.cu */
- template <typename scalar_t, typename accscalar_t>
- __device__ __forceinline__ static void upsample_increment_value_bounded(
- PackedTensorAccessor64<scalar_t, 4>& data,
- int batch,
- int channel,
- int height,
- int width,
- int y,
- int x,
- accscalar_t value) {
- int access_y = max(min(y, height - 1), 0);
- int access_x = max(min(x, width - 1), 0);
- /* TODO: result here is truncated to scalar_t,
- check: https://github.com/pytorch/pytorch/pull/19630#discussion_r281426912
- */
- gpuAtomicAddNoReturn(
- &data[batch][channel][access_y][access_x], static_cast<scalar_t>(value));
- }
- // Based on
- // https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
- template <typename accscalar_t>
- __device__ __forceinline__ static accscalar_t cubic_convolution1(
- accscalar_t x,
- accscalar_t A) {
- return ((A + 2) * x - (A + 3)) * x * x + 1;
- }
- template <typename accscalar_t>
- __device__ __forceinline__ static accscalar_t cubic_convolution2(
- accscalar_t x,
- accscalar_t A) {
- return ((A * x - 5 * A) * x + 8 * A) * x - 4 * A;
- }
- template <typename accscalar_t>
- __device__ __forceinline__ static void get_cubic_upsampling_coefficients(
- accscalar_t coeffs[4],
- accscalar_t t) {
- accscalar_t A = -0.75;
- accscalar_t x1 = t;
- coeffs[0] = cubic_convolution2<accscalar_t>(x1 + 1.0, A);
- coeffs[1] = cubic_convolution1<accscalar_t>(x1, A);
- // opposite coefficients
- accscalar_t x2 = 1.0 - t;
- coeffs[2] = cubic_convolution1<accscalar_t>(x2, A);
- coeffs[3] = cubic_convolution2<accscalar_t>(x2 + 1.0, A);
- }
- template <typename scalar_t, typename accscalar_t>
- __device__ __forceinline__ static accscalar_t cubic_interp1d(
- scalar_t x0,
- scalar_t x1,
- scalar_t x2,
- scalar_t x3,
- accscalar_t t) {
- accscalar_t coeffs[4];
- get_cubic_upsampling_coefficients<accscalar_t>(coeffs, t);
- return x0 * coeffs[0] + x1 * coeffs[1] + x2 * coeffs[2] + x3 * coeffs[3];
- }
- namespace upsample_antialias {
- // taken from
- // https://github.com/python-pillow/Pillow/blob/6812205f18ca4ef54372e87e1a13ce4a859434df/
- // src/libImaging/Resample.c#L20-L29
- struct BilinearFilterFunctor {
- template <typename accscalar_t>
- __device__ accscalar_t operator()(accscalar_t x) const {
- if (x < 0) {
- x = -x;
- }
- if (x < 1) {
- return 1 - x;
- }
- return 0;
- }
- static const int size = 2;
- };
- // taken from
- // https://github.com/python-pillow/Pillow/blob/6812205f18ca4ef54372e87e1a13ce4a859434df/
- // src/libImaging/Resample.c#L46-L62
- struct BicubicFilterFunctor {
- template <typename accscalar_t>
- __device__ accscalar_t operator()(accscalar_t x) const {
- // https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
- const accscalar_t a = -0.5;
- if (x < 0) {
- x = -x;
- }
- if (x < 1) {
- return ((a + 2) * x - (a + 3)) * x * x + 1;
- }
- if (x < 2) {
- return (((x - 5) * x + 8) * x - 4) * a;
- }
- return 0;
- }
- static const int size = 4;
- };
- template <typename accscalar_t>
- __device__ __forceinline__ static void _compute_weights_span(
- const int i,
- const int input_size,
- const accscalar_t scale,
- const accscalar_t support,
- int& xmin,
- int& xsize,
- accscalar_t& center) {
- center = scale * (i + static_cast<accscalar_t>(0.5));
- xmin = max(static_cast<int>(center - support + static_cast<accscalar_t>(0.5)), static_cast<int>(0));
- xsize = min(static_cast<int>(center + support + static_cast<accscalar_t>(0.5)), input_size) - xmin;
- }
- template <typename scalar_t, typename accscalar_t, typename interp_filter_t>
- __device__ __forceinline__ static void _compute_weights(
- scalar_t* wt_ptr,
- const accscalar_t scale,
- int interp_size,
- const interp_filter_t& interp_filter,
- accscalar_t xmin_m_center,
- int xsize) {
- accscalar_t invscale = (scale >= 1.0) ? 1.0 / scale : 1.0;
- accscalar_t total_w = 0.0;
- int j = 0;
- for (j = 0; j < xsize; j++) {
- accscalar_t w = interp_filter((j + xmin_m_center + static_cast<accscalar_t>(0.5)) * invscale);
- wt_ptr[j] = static_cast<scalar_t>(w);
- total_w += w;
- }
- for (j = 0; j < xsize; j++) {
- if (total_w != 0.0) {
- wt_ptr[j] /= total_w;
- }
- }
- for (; j < interp_size; j++) {
- wt_ptr[j] = static_cast<scalar_t>(0.0);
- }
- }
- template <typename scalar_t, typename accscalar_t>
- __device__ __forceinline__ static accscalar_t interpolate_aa_single_dim(
- const scalar_t* src,
- const scalar_t* weights,
- int size) {
- scalar_t t = static_cast<accscalar_t>(*src);
- scalar_t wts = static_cast<accscalar_t>(weights[0]);
- accscalar_t output = t * wts;
- int j = 1;
- for (; j < size; j++) {
- wts = static_cast<accscalar_t>(weights[j]);
- t = static_cast<accscalar_t>(*(src + j));
- output += t * wts;
- }
- return output;
- }
- }
- } // namespace native
- } // namespace at
|