123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364 |
- #pragma once
- // This file provides two functions to help write GPU elementwise kernels:
- //
- // gpu_kernel(TensorIterator iter, <lambda>)
- // gpu_kernel_with_scalars(TensorIterator iter, <lambda>)
- //
- // The gpu_kernel_with_scalars generates specializations that support a
- // single scalar CPU argument, such as from `cuda_tensor + 5`. The CPU scalar
- // is lifted to a kernel parameter instead of copying to device memory.
- // This should be used in conjunction with TensorIterator::allow_cpu_scalars_,
- // which is the default for TensorIterator::binary_op. Otherwise, all inputs
- // and the output must be on the GPU.
- //
- // For example, to write a reciprocal kernel for GPU float Tensors:
- //
- // gpu_kernel(iter, []GPU_LAMBDA(float a) {
- // return 1.0f / a;
- // });
- //
- // To write a multiplication kernel for GPU float Tensors where one argument
- // may be a CPU scalar:
- //
- // gpu_kernel_with_scalars(iter, []GPU_LAMBDA(float a, float b) {
- // return a * b;
- // });
- //
- // See BinaryOpsKernel.cu for the complete implementation
- //
- #include <type_traits>
- #include <ATen/cuda/CUDAContext.h>
- #include <ATen/core/Array.h>
- #include <ATen/cuda/detail/OffsetCalculator.cuh>
- #include <ATen/detail/FunctionTraits.h>
- #include <ATen/native/TensorIterator.h>
- #include <c10/macros/Macros.h>
- #include <c10/core/ScalarType.h>
- #include <c10/core/DynamicCast.h>
- #ifdef __NVCC__
- #define ASSERT_HOST_DEVICE_LAMBDA(type) \
- static_assert(__nv_is_extended_host_device_lambda_closure_type(type), \
- #type " must be a __host__ __device__ lambda")
- #else
- #define ASSERT_HOST_DEVICE_LAMBDA(type)
- #endif
- static constexpr int launch_size_1d = 512;
- static constexpr int launch_size_nd = 128;
- static constexpr int launch_bound2 = 4;
- namespace at { namespace native {
- // See [NOTE: Complex Operator Unification]
- // std::complex and thrust::complex don't work with some !needs_dynamic_casting optimizations.
- // They always currently map to !needs_dynamic_casting even though we sometimes rely on the ability
- // to reinterpret_cast between these representations.
- // In order to separate these concerns, we have a check for non-c10 complex separately.
- template<typename func_t, int nargs=function_traits<func_t>::arity>
- struct uses_non_c10_complex {
- constexpr static bool check() {
- using traits = function_traits<func_t>;
- using type = typename traits::template arg<nargs - 1>::type;
- constexpr bool non_c10_complex =
- std::is_same<std::complex<float>, type>::value
- || std::is_same<std::complex<double>, type>::value
- || std::is_same<thrust::complex<float>, type>::value
- || std::is_same<thrust::complex<double>, type>::value;
- return c10::guts::if_constexpr<non_c10_complex>([]() {
- return true;
- }, /* else */ []() {
- return uses_non_c10_complex<func_t, nargs - 1>::check();
- });
- }
- };
- template<typename func_t>
- struct uses_non_c10_complex<func_t, 0> {
- constexpr static bool check() {
- using traits = function_traits<func_t>;
- using type = typename traits::result_type;
- constexpr bool non_c10_complex =
- std::is_same<std::complex<float>, type>::value
- || std::is_same<std::complex<double>, type>::value
- || std::is_same<thrust::complex<float>, type>::value
- || std::is_same<thrust::complex<double>, type>::value;
- return non_c10_complex;
- }
- };
- // NOTE: @zasdfgbnm is currently working on rewriting the gpu loops.
- // Some of the old codes has been moved to namespace legacy, and
- // new codes will be put into namespace modern. These two namespaces
- // will coexists for a while until the rewrite is done. Once the rewrite
- // is done, we will remove the legacy and modern namespace and everything
- // will be in at::native directly.
- namespace legacy {
- template<int nt, int vt, typename func_t>
- C10_LAUNCH_BOUNDS_2(nt, launch_bound2)
- __global__ void elementwise_kernel(int N, func_t f) {
- int tid = threadIdx.x;
- int nv = nt * vt;
- int idx = nv * blockIdx.x + tid;
- #pragma unroll
- for (int i = 0; i < vt; i++) {
- if (idx < N) {
- f(idx);
- idx += nt;
- }
- }
- }
- template<int nt, int vt, typename func_t>
- static void launch_kernel(int64_t N, const func_t& f) {
- TORCH_INTERNAL_ASSERT(N >= 0 && N <= std::numeric_limits<int32_t>::max());
- if (N == 0) {
- return;
- }
- dim3 block(nt);
- dim3 grid((N + block.x * vt - 1) / (block.x * vt));
- auto stream = at::cuda::getCurrentCUDAStream();
- elementwise_kernel<nt, vt, func_t><<<grid, block, 0, stream>>>(N, f);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- }
- template <typename traits, typename func_t, typename index_t, size_t... INDEX>
- C10_HOST_DEVICE typename traits::result_type
- invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i,
- std::index_sequence<INDEX...>) {
- return f(c10::load<typename traits::template arg<INDEX>::type>(data[INDEX] + i * strides[INDEX])...);
- }
- template <typename func_t, typename index_t, typename traits = function_traits<func_t>>
- C10_HOST_DEVICE typename traits::result_type
- invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i) {
- using Indices = std::make_index_sequence<traits::arity>;
- return invoke_impl<traits>(f, data, strides, i, Indices{});
- }
- template <typename traits, typename func_t, typename index_t, size_t... I>
- C10_HOST_DEVICE typename traits::result_type
- invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i,
- std::index_sequence<I...>) {
- return f(c10::fetch_and_cast<typename traits::template arg<I>::type>(dtypes[I], data[I] + i * strides[I])...);
- }
- template <typename func_t, typename index_t, typename traits = function_traits<func_t>>
- C10_HOST_DEVICE typename traits::result_type
- invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i) {
- using Indices = std::make_index_sequence<traits::arity>;
- return invoke_impl<traits>(f, data, strides, dtypes, i, Indices{});
- }
- } // namespace legacy
- // See the note for namespace legacy above.
- namespace modern {
- namespace detail {
- template <typename func_t, typename array_t, std::size_t... I>
- __device__ inline constexpr decltype(auto) invoke_with_array_impl(func_t f, array_t t, std::index_sequence<I...>)
- {
- return f(t[I]...);
- }
- template <typename func_t, typename array_t>
- __device__ inline constexpr decltype(auto) invoke_with_array(func_t f, array_t a) {
- constexpr auto arity = function_traits<func_t>::arity;
- return invoke_with_array_impl(f, a, std::make_index_sequence<arity>{});
- }
- namespace arg_type {
- // We need a way to compute the argument type of a function. But
- // for nullary function, it does not really have an argument type
- // in this case, we still need to return a valid type, but we don't
- // really care what type this is.
- struct dont_care {};
- template <typename func_t, std::size_t arity>
- struct arg_type_helper {
- using type = typename function_traits<func_t>::template arg<0>::type;
- };
- template <typename func_t>
- struct arg_type_helper<func_t, 0> {
- using type = dont_care;
- };
- template <typename func_t>
- using type = typename arg_type_helper<func_t, function_traits<func_t>::arity>::type;
- } // namespace arg_type
- template<typename func_t, int remaining=function_traits<func_t>::arity-1>
- struct has_same_arg_types {
- using traits = function_traits<func_t>;
- static constexpr bool value = std::is_same<
- typename traits::template arg<remaining>::type,
- typename traits::template arg<remaining-1>::type
- >::value && has_same_arg_types<func_t, remaining-1>::value;
- };
- template<typename func_t>
- struct has_same_arg_types<func_t, 0> {
- static constexpr bool value = true;
- };
- template<typename func_t>
- struct has_same_arg_types<func_t, -1> {
- static constexpr bool value = true;
- };
- } // namespace detail
- template<typename func_t, typename array_t>
- C10_LAUNCH_BOUNDS_1(num_threads())
- __global__ void elementwise_kernel(int N, func_t f, array_t data) {
- // Assumption:
- // 1. all arguments of `f` have the same type, which could be different from the return type of `f`
- // 2. all tensors are contiguous, that is: stride == sizeof(type) for all tensors
- using traits = function_traits<func_t>;
- using return_t = typename traits::result_type;
- using arg_t = detail::arg_type::type<func_t>;
- constexpr int arity = traits::arity;
- // We need to create array to hold all the arguments, for nullary `f`, this means array of size 0.
- // Unfortunately the compiler don't allow us to create array of 0 size, so for this case, we create
- // an array of size 1 and just don't use it.
- constexpr int nargs = traits::arity == 0 ? 1 : traits::arity;
- int tid = threadIdx.x;
- int idx = block_work_size() * blockIdx.x + tid;
- // compute base pointers
- return_t *result_base = reinterpret_cast<return_t *>(data[0]) + idx;
- arg_t *args_base[nargs];
- #pragma unroll
- for (int i = 0; i < arity; i++) {
- args_base[i] = reinterpret_cast<arg_t *>(data[i + 1]) + idx;
- }
- // fetch data
- return_t results[thread_work_size()];
- arg_t args[thread_work_size()][nargs];
- #pragma unroll
- for (int i = 0; i < thread_work_size(); i++) {
- if (idx + num_threads() * i < N) {
- #pragma unroll
- for (int j = 0; j < arity; j++) {
- args[i][j] = c10::load(args_base[j] + i * num_threads());
- }
- }
- }
- // compute
- #pragma unroll
- for (int i = 0; i < thread_work_size(); i++) {
- if (idx + num_threads() * i < N) {
- results[i] = detail::invoke_with_array<func_t, arg_t[nargs]>(f, args[i]);
- }
- }
- // store data
- #pragma unroll
- for (int i = 0; i < thread_work_size(); i++) {
- if (idx + num_threads() * i < N) {
- *(result_base + i * num_threads()) = results[i];
- }
- }
- }
- // TODO (@zasdfgbnm): this function assume trivial 1d and no dynamic casting
- template<typename func_t, typename array_t, std::enable_if_t<detail::has_same_arg_types<func_t>::value, int> = 0>
- static void launch_kernel(int64_t N, const func_t& f, array_t data) {
- TORCH_INTERNAL_ASSERT(N >= 0 && N <= std::numeric_limits<int32_t>::max());
- if (N == 0) {
- return;
- }
- int64_t grid = (N + block_work_size() - 1) / block_work_size();
- auto stream = at::cuda::getCurrentCUDAStream();
- elementwise_kernel<func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- }
- template<typename func_t, typename array_t, std::enable_if_t<!detail::has_same_arg_types<func_t>::value, int> = 0>
- static void launch_kernel(int64_t N, const func_t& f, array_t data) {}
- } // namespace modern
- template <typename func_t>
- void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
- using traits = function_traits<func_t>;
- using arg0_t = typename traits::result_type;
- constexpr int ntensors = traits::arity + 1;
- TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
- TORCH_INTERNAL_ASSERT(iter.ntensors() == traits::arity + 1);
- bool non_c10_complex = uses_non_c10_complex<func_t>::check();
- at::detail::Array<char*, ntensors> data;
- for (int i = 0; i < ntensors; i++) {
- data[i] = (char*)iter.data_ptr(i);
- }
- at::detail::Array<ScalarType, ntensors> dtypes;
- for (int i = 0; i < ntensors; i++) {
- dtypes[i] = iter.dtype(i);
- }
- int64_t numel = iter.numel();
- if (iter.is_trivial_1d()) {
- auto inner_strides = iter.get_inner_strides();
- at::detail::Array<int, ntensors> strides;
- for (int i = 0; i < ntensors; i++) {
- strides[i] = inner_strides[i];
- }
- // TODO: can non_c10_complex go through the other path? Need to verify.
- if (needs_dynamic_casting<func_t>::check(iter) || non_c10_complex) {
- legacy::launch_kernel<launch_size_1d, 1>(numel, [=]GPU_LAMBDA(int idx) {
- void* out = data[0] + strides[0] * idx;
- arg0_t result = legacy::invoke(f, &data.data[1], &strides.data[1], &dtypes.data[1], idx);
- c10::cast_and_store<arg0_t>(dtypes[0], out, result);
- });
- } else if (iter.has_contiguous_first_dim() && modern::detail::has_same_arg_types<func_t>::value) {
- modern::launch_kernel(numel, f, data);
- } else {
- legacy::launch_kernel<launch_size_1d, 1>(numel, [=]GPU_LAMBDA(int idx) {
- arg0_t* out = (arg0_t*)(data[0] + strides[0] * idx);
- *out = legacy::invoke(f, &data.data[1], &strides.data[1], idx);
- });
- }
- } else {
- auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
- // TODO: can non_c10_complex go through the other path? Need to verify.
- if (needs_dynamic_casting<func_t>::check(iter) || non_c10_complex) {
- legacy::launch_kernel<launch_size_nd, launch_bound2>(numel, [=]GPU_LAMBDA(int idx) {
- auto offsets = offset_calc.get(idx);
- void* out = data[0] + offsets[0];
- arg0_t result = legacy::invoke(f, &data.data[1], &offsets.data[1], &dtypes.data[1], 1);
- c10::cast_and_store<arg0_t>(dtypes[0], out, result);
- });
- } else {
- legacy::launch_kernel<launch_size_nd, launch_bound2>(numel, [=]GPU_LAMBDA(int idx) {
- auto offsets = offset_calc.get(idx);
- arg0_t* out = (arg0_t*)(data[0] + offsets[0]);
- *out = legacy::invoke(f, &data.data[1], &offsets.data[1], 1);
- });
- }
- }
- }
- }} // namespace at::native
|