123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- #pragma once
- #include <assert.h>
- #include <cfloat>
- #include <limits>
- #include <stdint.h>
- #include <cuda_fp16.h>
- #include <c10/macros/Macros.h>
- #include <ATen/cuda/DeviceUtils.cuh>
- namespace {
- int log2_ceil(int value) {
- int log2_value = 0;
- while ((1 << log2_value) < value) ++log2_value;
- return log2_value;
- }
- template<typename T>
- struct Add {
- __device__ __forceinline__ T operator()(T a, T b) const {
- return a + b;
- }
- };
- template<typename T>
- struct Max {
- __device__ __forceinline__ T operator()(T a, T b) const {
- return a < b ? b : a;
- }
- };
- template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
- __device__ __forceinline__ void warp_reduce(acc_t* sum) {
- ReduceOp<acc_t> r;
- #pragma unroll
- for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
- #pragma unroll
- for (int i = 0; i < WARP_BATCH; ++i) {
- acc_t b = WARP_SHFL_XOR(sum[i], offset, WARP_SIZE);
- sum[i] = r(sum[i], b);
- }
- }
- }
- // The softmax_warp_* methods perform softmax forward and backward propagation on samples spanning the fast dimension.
- // Each sample contains element_count scalar elements. element_count can be any integer value <= 1024.
- // The template arguments have the following meaning:
- // One "WARP" works on one "BATCH". One "BATCH" contains "WARP_BATCH" samples.
- // WARP_BATCH is equal to 1 when element_count is large, and > 1 when element_count is small.
- // A "WARP" contains "C10_WARPS_SIZE" threads, these treads are guaranteed to belong to the same warp.
- // This is important because it means only __shfl_ instructions are required for reductions.
- // Note that this means WARP_SIZE must be a power of two and <= architecture warp size.
- // CUDA warp size is 32 for all existing GPU architectures, but there is no guarantee this will not change for future arch.
- // ROCm warp size is 64 for all currently ROCm-supported GPU architectures, but this may change for future archs.
- // is_log_softmax is a flag indicating whether SoftMax or LogSoftMax should be computed.
- // is_masked is a flag indicating whether SoftMax or MaskedSoftMax should be computed.
- // The template can be instantiated with any floating point type for the type arguments input_t, output_t and acc_t.
- // This allows SoftMax to be fused with a cast immediately following the SoftMax.
- // The mask should have the same shape as input, with a boolean indicate if the value is masked.
- // The head_chunk_size is only used for transformer mask softmax, equals to H * D * D.
- // For instance:
- // input_t=half, acc_t=float, output_t=half => read half tensor, float accumulators, write half tensor.
- // input_t=half, acc_t=float, output_t=float => read half tensor, float accumulators, write float tensor.
- // input_t_float, acc_t=float, output_t=half => read float tensor, float accumulators, write half tensor.
- template <typename input_t, typename output_t, typename acc_t, int log2_elements, bool is_log_softmax, bool is_masked>
- __global__ void softmax_warp_forward(output_t *dst, const input_t *src, int batch_size, int stride, int element_count, const bool *mask = nullptr, const int head_chunk_size = -1, bool is_transformer_mask = false)
- {
- // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and warp_size of method warp_softmax_forward_kernel.
- constexpr int next_power_of_two = 1 << log2_elements;
- constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
- constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
- constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
- int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
- // batch_size might not be a multiple of WARP_BATCH. Check how
- // many batches have to computed within this WARP.
- int local_batches = batch_size - first_batch;
- if (local_batches > WARP_BATCH)
- local_batches = WARP_BATCH;
- // there might be multiple batches per warp. compute the index within the batch
- int local_idx = threadIdx.x;
- int idx_offset = first_batch * stride + local_idx;
- src += idx_offset;
- dst += idx_offset;
- if (is_transformer_mask) {
- mask += ((first_batch * stride) / head_chunk_size) * stride + local_idx;
- } else {
- mask += idx_offset;
- }
- // The nested loops over WARP_BATCH and then WARP_ITERATIONS can be simplified to one loop,
- // but I think doing so would obfuscate the logic of the algorithm, thus I chose to keep
- // the nested loops.
- // This should have no impact on performance because the loops are unrolled anyway.
- // load data from global memory
- acc_t elements[WARP_BATCH][WARP_ITERATIONS];
- for (int i = 0; i < WARP_BATCH; ++i) {
- int batch_element_count = (i >= local_batches) ? 0 : element_count;
- for (int it = 0; it < WARP_ITERATIONS; ++it) {
- int element_index = local_idx + it * WARP_SIZE;
- if (element_index < batch_element_count) {
- elements[i][it] = src[i*element_count+it*WARP_SIZE];
- } else {
- elements[i][it] = -std::numeric_limits<acc_t>::infinity();
- }
- }
- }
- // compute max_value
- acc_t max_value[WARP_BATCH];
- #pragma unroll
- for (int i = 0; i < WARP_BATCH; ++i) {
- int batch_element_count = (i >= local_batches) ? 0 : element_count;
- bool is_meaningful_max = false;
- max_value[i] = elements[i][0];
- #pragma unroll
- for (int it = 0; it < WARP_ITERATIONS; ++it) {
- if (is_masked) {
- int idx = it*WARP_SIZE;
- if ((idx + local_idx) < batch_element_count) {
- if (!is_transformer_mask) {
- idx += i*element_count;
- }
- if (!mask[idx]) {
- max_value[i] = (is_meaningful_max && max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it];
- is_meaningful_max = true;
- }
- }
- } else {
- max_value[i] = max_value[i] > elements[i][it] ? max_value[i] : elements[i][it];
- }
- }
- if (is_masked) {
- if (!is_meaningful_max) {
- max_value[i] = -std::numeric_limits<acc_t>::infinity();
- }
- }
- }
- warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Max>(max_value);
- acc_t sum[WARP_BATCH] { 0.0f };
- #pragma unroll
- for (int i = 0; i < WARP_BATCH; ++i) {
- int batch_element_count = (i >= local_batches) ? 0 : element_count;
- #pragma unroll
- for (int it = 0; it < WARP_ITERATIONS; ++it) {
- if (!is_masked) {
- if (is_log_softmax) {
- sum[i] += std::exp(elements[i][it] - max_value[i]);
- } else {
- elements[i][it] = std::exp(elements[i][it] - max_value[i]);
- sum[i] += elements[i][it];
- }
- } else {
- int idx = it*WARP_SIZE;
- bool valid = (idx + local_idx) < batch_element_count;
- if (!is_transformer_mask) {
- idx += i*element_count;
- }
- if (valid) {
- if (!mask[idx]) {
- if (is_log_softmax) {
- sum[i] += std::exp(elements[i][it] - max_value[i]);
- } else {
- elements[i][it] = std::exp(elements[i][it] - max_value[i]);
- sum[i] += elements[i][it];
- }
- } else {
- if (!is_log_softmax) {
- // Masked values are treated as -infinity, and std::exp(-infinity) is 0.
- elements[i][it] = 0;
- }
- }
- } else {
- if (!is_log_softmax) {
- elements[i][it] = 0.;
- }
- }
- }
- }
- }
- warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
- // store result
- #pragma unroll
- for (int i = 0; i < WARP_BATCH; ++i) {
- if (i >= local_batches)
- break;
- if (is_log_softmax) sum[i] = std::log(sum[i]);
- #pragma unroll
- for (int it = 0; it < WARP_ITERATIONS; ++it) {
- int element_index = local_idx + it * WARP_SIZE;
- if (element_index < element_count) {
- if (is_log_softmax) {
- dst[i*element_count+it*WARP_SIZE] = elements[i][it] - max_value[i] - sum[i];
- } else if (sum[i] == 0) {
- dst[i*element_count+it*WARP_SIZE] = std::numeric_limits<acc_t>::quiet_NaN();
- } else {
- dst[i*element_count+it*WARP_SIZE] = elements[i][it] / sum[i];
- }
- } else {
- break;
- }
- }
- }
- }
- template <typename input_t, typename output_t, typename acc_t, int log2_elements, bool is_log_softmax, bool is_masked>
- __global__ void softmax_warp_backward(output_t *gradInput, const input_t *grad, const input_t *output, int batch_size, int stride, int element_count, const bool *mask = nullptr)
- {
- // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and warp_size of method warp_softmax_backward_kernel.
- constexpr int next_power_of_two = 1 << log2_elements;
- constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
- constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
- constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
- int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
- // batch_size might not be a multiple of WARP_BATCH. Check how
- // many batches have to computed within this WARP.
- int local_batches = batch_size - first_batch;
- if (local_batches > WARP_BATCH)
- local_batches = WARP_BATCH;
- // there might be multiple batches per warp. compute the index within the batch
- int local_idx = threadIdx.x % WARP_SIZE;
- // the first element to process by the current thread
- int thread_offset = first_batch * stride + local_idx;
- grad += thread_offset;
- output += thread_offset;
- gradInput += thread_offset;
- if (is_masked) {
- mask += thread_offset;
- }
- // The nested loops over WARP_BATCH and then WARP_ITERATIONS can be simplified to one loop,
- // but I think doing so would obfuscate the logic of the algorithm, thus I chose to keep
- // the nested loops.
- // This should have no impact on performance because the loops are unrolled anyway.
- // load data from global memory
- acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS];
- acc_t output_reg[WARP_BATCH][WARP_ITERATIONS];
- for (int i = 0; i < WARP_BATCH; ++i) {
- int batch_element_count = (i >= local_batches) ? 0 : element_count;
- for (int it = 0; it < WARP_ITERATIONS; ++it) {
- int element_index = local_idx + it * WARP_SIZE;
- if (element_index < batch_element_count) {
- grad_reg[i][it] = grad[i*element_count+it*WARP_SIZE];
- output_reg[i][it] = output[i*element_count+it*WARP_SIZE];
- } else {
- grad_reg[i][it] = acc_t(0);
- output_reg[i][it] = acc_t(0);
- }
- }
- }
- acc_t sum[WARP_BATCH] { 0.0f };
- #pragma unroll
- for (int i = 0; i < WARP_BATCH; ++i) {
- #pragma unroll
- for (int it = 0; it < WARP_ITERATIONS; ++it) {
- if (!is_masked || !mask[i*element_count+it*WARP_SIZE]) {
- sum[i] += grad_reg[i][it];
- }
- }
- }
- warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
- // store result
- #pragma unroll
- for (int i = 0; i < WARP_BATCH; ++i) {
- if (i >= local_batches)
- break;
- #pragma unroll
- for (int it = 0; it < WARP_ITERATIONS; ++it) {
- int element_index = local_idx + it * WARP_SIZE;
- if (element_index < element_count) {
- if (is_masked && mask[i*element_count+it*WARP_SIZE]) {
- gradInput[i*element_count+it*WARP_SIZE] = 0;
- }
- // compute gradients
- else if (is_log_softmax) {
- gradInput[i*element_count+it*WARP_SIZE] = (grad_reg[i][it] - std::exp(output_reg[i][it]) * sum[i]);
- } else {
- gradInput[i*element_count+it*WARP_SIZE] = (grad_reg[i][it] - output_reg[i][it] * sum[i]);
- }
- }
- }
- }
- }
- } // end of anonymous namespace
- template<typename input_t, typename output_t, typename acc_t, bool is_log_softmax, bool is_masked>
- void dispatch_softmax_forward(output_t *dst, const input_t *src, int softmax_elements, int softmax_elements_stride, int batch_count, const bool *mask = nullptr, int chunk_size = -1, bool is_transformer_mask = false)
- {
- TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 1024 );
- if (softmax_elements == 0) {
- return;
- } else {
- int log2_elements = log2_ceil(softmax_elements);
- const int next_power_of_two = 1 << log2_elements;
- // This value must match the WARP_SIZE constexpr value computed inside softmax_warp_forward.
- int warp_size = at::cuda::warp_size();
- warp_size = (next_power_of_two < warp_size) ? next_power_of_two : warp_size;
- // This value must match the WARP_BATCH constexpr value computed inside softmax_warp_forward.
- int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
- // use 128 threads per block to maximimize gpu utilization
- constexpr int threads_per_block = 128;
- int warps_per_block = (threads_per_block / warp_size);
- int batches_per_block = warps_per_block * batches_per_warp;
- int blocks = (batch_count + batches_per_block - 1) / batches_per_block;
- dim3 threads(warp_size, warps_per_block, 1);
- // Launch code would be more elegant if C++ supported FOR CONSTEXPR
- switch (log2_elements) {
- #define LAUNCH_SOFTMAX_WARP_FORWARD(L2E) case L2E: \
- softmax_warp_forward<input_t, output_t, acc_t, L2E, is_log_softmax, is_masked> \
- <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, \
- src, batch_count, softmax_elements_stride, softmax_elements, mask, chunk_size, is_transformer_mask); \
- C10_CUDA_KERNEL_LAUNCH_CHECK(); \
- break;
- LAUNCH_SOFTMAX_WARP_FORWARD(0); // 1
- LAUNCH_SOFTMAX_WARP_FORWARD(1); // 2
- LAUNCH_SOFTMAX_WARP_FORWARD(2); // 4
- LAUNCH_SOFTMAX_WARP_FORWARD(3); // 8
- LAUNCH_SOFTMAX_WARP_FORWARD(4); // 16
- LAUNCH_SOFTMAX_WARP_FORWARD(5); // 32
- LAUNCH_SOFTMAX_WARP_FORWARD(6); // 64
- LAUNCH_SOFTMAX_WARP_FORWARD(7); // 128
- LAUNCH_SOFTMAX_WARP_FORWARD(8); // 256
- LAUNCH_SOFTMAX_WARP_FORWARD(9); // 512
- LAUNCH_SOFTMAX_WARP_FORWARD(10); ; // 1024
- default:
- break;
- }
- }
- }
- template<typename input_t, typename output_t, typename acc_t, bool is_log_softmax, bool is_masked>
- void dispatch_softmax_backward(output_t *grad_input, const input_t *grad, const input_t *output, int softmax_elements, int softmax_elements_stride, int batch_count, const bool *mask = nullptr)
- {
- TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 1024 );
- if (softmax_elements == 0) {
- return;
- } else {
- int log2_elements = log2_ceil(softmax_elements);
- const int next_power_of_two = 1 << log2_elements;
- // This value must match the WARP_SIZE constexpr value computed inside softmax_warp_backward.
- int warp_size = at::cuda::warp_size();
- warp_size = (next_power_of_two < warp_size) ? next_power_of_two : warp_size;
- // This value must match the WARP_BATCH constexpr value computed inside softmax_warp_backward.
- int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
- // use 128 threads per block to maximimize gpu utilization
- constexpr int threads_per_block = 128;
- int warps_per_block = (threads_per_block / warp_size);
- int batches_per_block = warps_per_block * batches_per_warp;
- int blocks = (batch_count + batches_per_block - 1) / batches_per_block;
- dim3 threads(warp_size, warps_per_block, 1);
- // Launch code would be more elegant if C++ supported FOR CONSTEXPR
- switch (log2_elements) {
- #define LAUNCH_SOFTMAX_WARP_BACKWARD(L2E) case L2E: \
- softmax_warp_backward<input_t, output_t, acc_t, L2E, is_log_softmax, is_masked> \
- <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>> \
- (grad_input, grad, output, batch_count, softmax_elements_stride, \
- softmax_elements, mask); \
- C10_CUDA_KERNEL_LAUNCH_CHECK(); \
- break;
- LAUNCH_SOFTMAX_WARP_BACKWARD(0); // 1
- LAUNCH_SOFTMAX_WARP_BACKWARD(1); // 2
- LAUNCH_SOFTMAX_WARP_BACKWARD(2); // 4
- LAUNCH_SOFTMAX_WARP_BACKWARD(3); // 8
- LAUNCH_SOFTMAX_WARP_BACKWARD(4); // 16
- LAUNCH_SOFTMAX_WARP_BACKWARD(5); // 32
- LAUNCH_SOFTMAX_WARP_BACKWARD(6); // 64
- LAUNCH_SOFTMAX_WARP_BACKWARD(7); // 128
- LAUNCH_SOFTMAX_WARP_BACKWARD(8); // 256
- LAUNCH_SOFTMAX_WARP_BACKWARD(9); // 512
- LAUNCH_SOFTMAX_WARP_BACKWARD(10); // 1024
- default:
- break;
- }
- }
- }
|