123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- #pragma once
- #include <ATen/detail/FunctionTraits.h>
- #include <ATen/native/TensorIterator.h>
- #include <ATen/native/TensorIteratorDynamicCasting.h>
- #include <ATen/cuda/detail/OffsetCalculator.cuh>
- #include <ATen/OpMathType.h>
- #include <ATen/native/cuda/thread_constants.h>
- #include <thrust/tuple.h>
- #include <ATen/native/cuda/MemoryAccess.cuh>
- namespace at { namespace native {
- template<int N>
- static OffsetCalculator<N> make_input_offset_calculator(const TensorIteratorBase& iter) {
- // array size can not be 0, this happens when N == 0
- constexpr int array_size = std::max<int>(N, 1);
- TORCH_INTERNAL_ASSERT(N == iter.ntensors() - iter.noutputs());
- std::array<const int64_t*, array_size> strides;
- int64_t element_sizes[array_size];
- for (int i = 0; i < N; i++) {
- strides[i] = iter.strides(i + iter.noutputs()).data();
- element_sizes[i] = iter.element_size(i + iter.noutputs());
- }
- return OffsetCalculator<N>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
- }
- template <int num_outputs = 1>
- static OffsetCalculator<num_outputs> make_output_offset_calculator(const TensorIteratorBase& iter) {
- TORCH_INTERNAL_ASSERT(num_outputs == iter.noutputs());
- std::array<const int64_t*, num_outputs> strides;
- int64_t element_sizes[num_outputs];
- for (int i = 0; i < num_outputs; i++) {
- strides[i] = iter.strides(i).data();
- element_sizes[i] = iter.element_size(i);
- }
- return OffsetCalculator<num_outputs>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
- }
- template<typename func_t, typename policy_t>
- __device__ inline void elementwise_kernel_helper(func_t f, policy_t policy) {
- using traits = function_traits<func_t>;
- using return_t = typename traits::result_type;
- using args_t = typename traits::ArgsTuple;
- int idx = blockIdx.x;
- return_t results[thread_work_size()];
- args_t args[thread_work_size()];
- // load
- policy.load(args, idx);
- // compute
- #pragma unroll
- for (int i = 0; i < thread_work_size(); i++) {
- if (policy.check_inbounds(i)) {
- results[i] = c10::guts::apply(f, args[i]);
- }
- }
- // store
- policy.store(results, idx);
- }
- }} // namespace at::native
- // Note:
- // CUDA and ROCm get diverged in this PR:
- // https://github.com/pytorch/pytorch/pull/32383
- // Because for some reason trying to enable vectorized
- // memory access introduce regression on ROCm.
- #if !defined(USE_ROCM)
- #include <ATen/native/cuda/CUDALoops.cuh>
- #else
- #include <ATen/native/cuda/ROCmLoops.cuh>
- #endif
- namespace at { namespace native {
- template <typename func_t>
- void gpu_kernel(TensorIteratorBase& iter, const func_t& f) {
- for (int arg = 0; arg < iter.ntensors(); arg++) {
- TORCH_INTERNAL_ASSERT(
- iter.device(arg).is_cuda(),
- "argument ", arg, ": expected a CUDA device but found ", iter.device(arg));
- }
- if (iter.numel() == 0) {
- return;
- }
- if (!iter.can_use_32bit_indexing()) {
- for (auto& sub_iter : iter.with_32bit_indexing()) {
- gpu_kernel(sub_iter, f);
- }
- return;
- }
- gpu_kernel_impl(iter, f);
- }
- template<typename arg1_t, typename arg2_t, typename return_t, typename func_t>
- struct AUnaryFunctor {
- using traits = function_traits<func_t>;
- using opmath_arg1_t = typename traits::template arg<0>::type;
- __device__ return_t operator()(arg2_t b) const {
- return f(a, b);
- }
- // NB: scalar is stored in higher precision!
- AUnaryFunctor(func_t f_, opmath_arg1_t a_): f(f_), a(a_) {}
- private:
- func_t f;
- opmath_arg1_t a;
- };
- template<typename arg1_t, typename arg2_t, typename return_t, typename func_t>
- struct BUnaryFunctor {
- using traits = function_traits<func_t>;
- using opmath_arg2_t = typename traits::template arg<1>::type;
- __device__ return_t operator()(arg1_t a) const {
- return f(a, b);
- }
- // NB: scalar is stored in higher precision!
- BUnaryFunctor(func_t f_, opmath_arg2_t b_): f(f_), b(b_) {}
- private:
- func_t f;
- opmath_arg2_t b;
- };
- // Though seemingly noop, this inserts casts from arg1_t to func_t's type
- // (which may be higher precision), as well as casts to return_t
- template <typename arg1_t, typename arg2_t, typename return_t, typename func_t>
- struct BinaryFunctor {
- __device__ return_t operator()(arg1_t a, arg2_t b) const {
- return f(a, b);
- }
- BinaryFunctor(func_t f_): f(f_) {}
- private:
- func_t f;
- };
- // Unlike gpu_kernel_with_scalars, this allows you to pass a func_t which
- // accepts inputs at higher precision (typically opmath_t), but then
- // ensure that we load from memory at the correct precision (scalar_t)
- // to avoid expensive loads. For the whole sordid story see
- // https://dev-discuss.pytorch.org/t/cuda-loops-case-study-code-generation-vs-templates/302
- template <typename arg1_t, typename arg2_t = arg1_t, typename return_t = arg1_t, typename func_t>
- void opmath_gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
- TORCH_INTERNAL_ASSERT(iter.ntensors() == 3);
- using traits = function_traits<func_t>;
- using opmath_arg1_t = typename traits::template arg<0>::type;
- using opmath_arg2_t = typename traits::template arg<1>::type;
- static_assert(
- traits::arity == 2,
- "gpu_kernel_with_scalars only supports two input arguments");
- if (iter.is_cpu_scalar(1)) {
- AUnaryFunctor<arg1_t, arg2_t, return_t, func_t> af(f, iter.scalar_value<opmath_arg1_t>(1));
- iter.remove_operand(1);
- // TODO: When all kernels that use gpu_kernel_with_scalars are
- // ported to structured, this device guard can be deleted. This
- // works around incorrect device guard generation for pre-structured
- // kernels device guards, but structured kernels do it right and
- // we can assume the device is already set correctly
- const OptionalDeviceGuard device_guard(iter.device(1));
- gpu_kernel(iter, af);
- } else if (iter.is_cpu_scalar(2)) {
- BUnaryFunctor<arg1_t, arg2_t, return_t, func_t> bf(f, iter.scalar_value<opmath_arg2_t>(2));
- iter.remove_operand(2);
- gpu_kernel(iter, bf);
- } else {
- gpu_kernel(iter, BinaryFunctor<arg1_t, arg2_t, return_t, func_t>(f));
- }
- }
- template <typename scalar_t, typename return_t = scalar_t, typename func_t>
- void opmath_symmetric_gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
- // Use symmetric property of the functor to reduce number of kernels,
- // requires f(a, b) == f(b, a)
- TORCH_INTERNAL_ASSERT(iter.ntensors() == 3);
- using traits = function_traits<func_t>;
- using opmath_arg_t = typename traits::template arg<0>::type;
- static_assert(
- traits::arity == 2,
- "gpu_kernel_with_scalars only supports two input arguments");
- static_assert(std::is_same<opmath_arg_t, typename traits::template arg<1>::type>::value,
- "f is not symmetric");
- OptionalDeviceGuard device_guard;
- opmath_arg_t scalar_val{};
- if (iter.is_cpu_scalar(1)) {
- scalar_val = iter.scalar_value<opmath_arg_t>(1);
- iter.remove_operand(1);
- // TODO: When all kernels that use gpu_kernel_with_scalars are
- // ported to structured, this device guard can be deleted. This
- // works around incorrect device guard generation for pre-structured
- // kernels device guards, but structured kernels do it right and
- // we can assume the device is already set correctly
- device_guard.reset_device(iter.device(1));
- } else if (iter.is_cpu_scalar(2)) {
- scalar_val = iter.scalar_value<opmath_arg_t>(2);
- iter.remove_operand(2);
- }
- if (iter.ninputs() == 2) {
- gpu_kernel(iter, BinaryFunctor<scalar_t, scalar_t, return_t, func_t>(f));
- } else {
- AUnaryFunctor<scalar_t, scalar_t, return_t, func_t> unary_f(f, scalar_val);
- gpu_kernel(iter, unary_f);
- }
- }
- // Legacy variant that assumes that func_t has the correct types
- // that we expect to load from memory
- template <typename func_t>
- void gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
- using traits = function_traits<func_t>;
- static_assert(
- traits::arity == 2,
- "gpu_kernel_with_scalars only supports two input arguments");
- using arg1_t = typename traits::template arg<0>::type;
- using arg2_t = typename traits::template arg<1>::type;
- using return_t = typename traits::result_type;
- opmath_gpu_kernel_with_scalars<arg1_t, arg2_t, return_t, func_t>(iter, f);
- }
- namespace { // functions for `gpu_kernel_multiple_outputs`.
- // check the return type is `thrust::tuple`, not `std::tuple`.
- template <typename T> struct is_tuple: std::false_type {};
- template <typename ...T> struct is_tuple<thrust::tuple<T...>>: std::true_type {};
- template <int num_outputs, typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t>
- C10_LAUNCH_BOUNDS_1(num_threads())
- __global__ void unrolled_elementwise_kernel_for_multi_outputs(int N, func_t f, array_t data, inp_calc_t ic, out_calc_t oc) {
- int remaining = N - block_work_size() * blockIdx.x;
- elementwise_kernel_helper(f, memory::policies::multi_outputs_unroll<array_t, inp_calc_t, out_calc_t, num_outputs>(data, remaining, ic, oc));
- }
- template <int num_outputs, typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t>
- static inline void launch_unrolled_kernel_for_multi_outputs(int64_t N, const func_t& f, array_t data, inp_calc_t ic, out_calc_t oc) {
- TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
- int64_t grid = (N + block_work_size() - 1) / block_work_size();
- auto stream = at::cuda::getCurrentCUDAStream();
- unrolled_elementwise_kernel_for_multi_outputs<num_outputs, func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data, ic, oc);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- }
- template <typename func_t>
- void gpu_kernel_multiple_outputs_impl(TensorIteratorBase& iter, const func_t& f) {
- using traits = function_traits<func_t>;
- using output_t = typename traits::result_type;
- static_assert(is_tuple<output_t>::value, "f's return type must be `thrust::tuple`");
- constexpr int num_outputs = thrust::tuple_size<output_t>::value;
- constexpr int num_inputs = traits::arity;
- constexpr int ntensors = num_outputs + num_inputs;
- TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
- TORCH_INTERNAL_ASSERT(iter.ntensors() == ntensors);
- at::detail::Array<char*, ntensors> data;
- for (int i = 0; i < ntensors; i++) {
- data[i] = (char*)iter.data_ptr(i);
- }
- int64_t numel = iter.numel();
- if (iter.is_contiguous()) {
- auto input_calc = TrivialOffsetCalculator<num_inputs>();
- auto output_calc = TrivialOffsetCalculator<num_outputs>();
- launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
- } else {
- auto input_calc = make_input_offset_calculator<num_inputs>(iter);
- auto output_calc = make_output_offset_calculator<num_outputs>(iter);
- launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
- }
- }
- } // namespace
- template <typename func_t>
- void gpu_kernel_multiple_outputs(TensorIteratorBase& iter, const func_t& f) {
- ASSERT_HOST_DEVICE_LAMBDA(func_t);
- for (int arg = 0; arg < iter.ntensors(); arg++) {
- TORCH_INTERNAL_ASSERT(iter.device(arg).is_cuda());
- }
- if (iter.numel() == 0) {
- return;
- }
- if (!iter.can_use_32bit_indexing()) {
- for (auto& sub_iter : iter.with_32bit_indexing()) {
- gpu_kernel_multiple_outputs(sub_iter, f);
- }
- return;
- }
- gpu_kernel_multiple_outputs_impl(iter, f);
- }
- }} //namespace at::native
|