123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667 |
- #pragma once
- #include <ATen/AccumulateType.h>
- #include <ATen/Dispatch.h>
- #include <ATen/ExpandBase.h>
- #include <ATen/native/TensorIterator.h>
- #include <ATen/native/cuda/Loops.cuh>
- #include <c10/util/Half.h>
- #include <ATen/cuda/CUDAApplyUtils.cuh>
- #include <ATen/cuda/CUDAContext.h>
- #include <ATen/cuda/detail/OffsetCalculator.cuh>
- #include <ATen/cuda/CUDAGraphsUtils.cuh>
- #include <ATen/detail/FunctionTraits.h>
- #include <ATen/core/DistributionsHelper.h>
- #include <curand.h>
- #include <curand_kernel.h>
- #include <curand_philox4x32_x.h>
- #include <cstdint>
- #include <limits>
- #include <utility>
- #include <mutex>
- #include <tuple>
- #include <type_traits>
- namespace at {
- namespace native {
- namespace {
- // launch bounds used for kernels utilizing TensorIterator
- const uint32_t block_size_bound = 256;
- const uint32_t grid_size_bound = 4;
- // number of randoms given by distributions like curand_uniform4, curand_uniform2_double
- // used in calculating philox offset.
- const uint32_t curand4_engine_calls = 4;
- // utility function that calculates proper philox_offset
- // for distributions utilizing TensorIterator. For distributions using
- // TensorIterator, we are using a grid-stride loop with each
- // thread yielding one element per thread. For the edge of the grid-stride
- // loop, if the tensor size is large, the unroll loop will kick in and the float4
- // from curand4 will start getting utilized (for common tensor sizes, we end up
- // using rand.x from each thread). Hence, the philox_offset is
- // (number of elements per thread * number of engine calls), which makes
- // sure that philox offset increment is not less than the number of randoms used
- // in each thread.
- std::tuple<uint64_t, dim3, dim3> calc_execution_policy(int64_t total_elements) {
- const uint64_t numel = static_cast<uint64_t>(total_elements);
- const uint32_t block_size = block_size_bound;
- const uint32_t unroll = curand4_engine_calls;
- dim3 dim_block(block_size);
- dim3 grid((numel + block_size - 1) / block_size);
- uint32_t blocks_per_sm = at::cuda::getCurrentDeviceProperties()->maxThreadsPerMultiProcessor / block_size;
- grid.x = std::min(
- static_cast<uint32_t>(at::cuda::getCurrentDeviceProperties()->multiProcessorCount) * blocks_per_sm,
- grid.x);
- //number of times random will be generated per thread, to offset philox counter in thc random state
- uint64_t counter_offset = ((numel - 1) / (block_size * grid.x * unroll) + 1)
- * curand4_engine_calls;
- return std::make_tuple(counter_offset, grid, dim_block);
- }
- // grid stride loop kernel for distributions
- template<typename accscalar_t, int unroll_factor, typename dist_t, typename transform_t>
- C10_LAUNCH_BOUNDS_2(block_size_bound, grid_size_bound)
- __global__ void distribution_elementwise_grid_stride_kernel(int numel,
- PhiloxCudaState philox_args,
- const dist_t dist_func,
- const transform_t transform_func) {
- auto seeds = at::cuda::philox::unpack(philox_args);
- int idx = blockIdx.x * blockDim.x + threadIdx.x;
- curandStatePhilox4_32_10_t state;
- curand_init(std::get<0>(seeds),
- idx,
- std::get<1>(seeds),
- &state);
- int rounded_size = ((numel - 1)/(blockDim.x * gridDim.x * unroll_factor)+1) *
- blockDim.x * gridDim.x * unroll_factor;
- for(int linear_index = idx; linear_index < rounded_size; linear_index += blockDim.x * gridDim.x * unroll_factor) {
- auto rand = dist_func(&state);
- #pragma unroll
- for (int ii = 0; ii < unroll_factor; ii++) {
- int li = linear_index + blockDim.x * gridDim.x * ii;
- if (li < numel) {
- transform_func(li, static_cast<accscalar_t>((&rand.x)[ii]));
- }
- }
- __syncthreads();
- }
- }
- /**
- * distribution_nullary_kernel is analogous to gpu_kernel in
- * ATen/native/cuda/Loops.cuh. Like gpu_kernel, it uses
- * TensorIterator to launch a kernel. However, the differences are
- * - it launches a grid-stride loop based kernel. The kernel is not
- * generic like elementwise_kernel in Loops.cuh and is specialized
- * for the distribution kernels here.
- * - For big size tensors, we can launch multiple kernels recursively
- * (i.e. if (!iter.can_use_32bit_indexing())) and hence, the philox
- * offset calculation is done in this function.
- *
- * FIXME: Can we specialize elementwise_kernel and launch_kernel in Loops.cuh
- * to have grid-stride loop kernel and then use that to launch our distribution
- * kernels? Note that we need a grid-stride loop kernel because, we found by testing
- * that it achieves peak effective bandwidth.
- */
- template<typename scalar_t,
- typename accscalar_t,
- int unroll_factor,
- typename RNG,
- typename dist_t,
- typename transform_t>
- void distribution_nullary_kernel(at::TensorIteratorBase& iter,
- RNG gen,
- const dist_t& dist_func,
- const transform_t transform_func) {
- static_assert(unroll_factor >= 1, "unroll_factor must be >= 1.");
- int64_t numel = iter.numel();
- if (numel == 0) {
- return;
- }
- auto execution_policy = calc_execution_policy(numel);
- auto counter_offset = std::get<0>(execution_policy);
- auto grid = std::get<1>(execution_policy);
- auto block = std::get<2>(execution_policy);
- PhiloxCudaState rng_engine_inputs;
- {
- // See Note [Acquire lock when using random generators]
- std::lock_guard<std::mutex> lock(gen->mutex_);
- rng_engine_inputs = gen->philox_cuda_state(counter_offset);
- }
- if (!iter.can_use_32bit_indexing()) {
- for (auto& sub_iter : iter.with_32bit_indexing()) {
- distribution_nullary_kernel<scalar_t, accscalar_t, unroll_factor>(sub_iter,
- gen, dist_func, transform_func);
- }
- return;
- }
- char* out_data = (char*)iter.data_ptr(0);
- auto stream = at::cuda::getCurrentCUDAStream();
- if (iter.is_trivial_1d()) {
- auto strides = iter.get_inner_strides();
- int stride0 = strides[0];
- distribution_elementwise_grid_stride_kernel<accscalar_t, unroll_factor><<<grid, block, 0, stream>>>(
- numel,
- rng_engine_inputs,
- dist_func,
- [=]__device__(int idx, accscalar_t rand) {
- scalar_t* out = (scalar_t*)&out_data[stride0 * idx];
- *out = transform_func(rand);
- }
- );
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- } else {
- auto offset_calc = make_offset_calculator<1>(iter);
- distribution_elementwise_grid_stride_kernel<accscalar_t, unroll_factor><<<grid, block, 0, stream>>>(
- numel,
- rng_engine_inputs,
- dist_func,
- [=]__device__(int idx, accscalar_t rand) {
- auto offsets = offset_calc.get(idx);
- scalar_t* out = (scalar_t*)&out_data[offsets[0]];
- *out = transform_func(rand);
- }
- );
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- }
- }
- // Binary kernel
- template <typename func_t, typename inp_offset_calc_t, typename out_offset_calc_t>
- __global__ void distribution_binary_elementwise_kernel(
- int numel,
- func_t f,
- PhiloxCudaState philox_args,
- typename function_traits<func_t>::result_type *output_data,
- const typename function_traits<func_t>::template arg<1>::type *input_data_1,
- const typename function_traits<func_t>::template arg<2>::type *input_data_2,
- inp_offset_calc_t inp_calc,
- out_offset_calc_t out_calc) {
- auto seeds = at::cuda::philox::unpack(philox_args);
- using input_t_1 = typename function_traits<func_t>::template arg<1>::type;
- using input_t_2 = typename function_traits<func_t>::template arg<2>::type;
- input_t_1 inputs_1[thread_work_size()];
- input_t_2 inputs_2[thread_work_size()];
- int base_index = block_work_size() * blockIdx.x;
- int remaining = std::min<int>(numel - base_index, block_work_size());
- curandStatePhilox4_32_10_t state;
- curand_init(std::get<0>(seeds),
- blockIdx.x * blockDim.x + threadIdx.x,
- std::get<1>(seeds),
- &state);
- // load data into registers
- int thread_idx = threadIdx.x;
- #pragma unroll
- for (int i = 0; i < thread_work_size(); i++) {
- if (thread_idx >= remaining) {
- break;
- }
- int input_idx = thread_idx + base_index;
- auto offsets = inp_calc.get(input_idx);
- inputs_1[i] = input_data_1[offsets[0]];
- inputs_2[i] = input_data_2[offsets[1]];
- thread_idx += num_threads();
- }
- // compute and store
- thread_idx = threadIdx.x;
- #pragma unroll
- for (int i = 0; i < thread_work_size(); i++) {
- if (thread_idx >= remaining) {
- break;
- }
- int input_idx = thread_idx + base_index;
- auto offsets = out_calc.get(input_idx);
- output_data[offsets[0]] = f(state, inputs_1[i], inputs_2[i]);
- thread_idx += num_threads();
- }
- }
- template <typename func_t>
- void distribution_binary_kernel(TensorIteratorBase &iter, PhiloxCudaState philox_args, const func_t &f) {
- static_assert(std::is_same<typename function_traits<func_t>::template arg<0>::type, curandStatePhilox4_32_10_t&>::value, "the first argument of functor must be curandStatePhilox4_32_10_t");
- using input_t_1 = typename function_traits<func_t>::template arg<1>::type;
- using input_t_2 = typename function_traits<func_t>::template arg<2>::type;
- using output_t = typename function_traits<func_t>::result_type;
- if (!iter.can_use_32bit_indexing()) {
- for (auto& sub_iter : iter.with_32bit_indexing()) {
- distribution_binary_kernel(sub_iter, philox_args, f);
- }
- return;
- }
- TORCH_INTERNAL_ASSERT_DEBUG_ONLY(iter.can_use_32bit_indexing());
- int64_t numel = iter.numel();
- if (numel == 0) {
- return;
- }
- output_t *output_data = static_cast<output_t *>(iter.data_ptr(0));
- const input_t_1 *input_data_1 = static_cast<const input_t_1 *>(iter.data_ptr(1));
- const input_t_2 *input_data_2 = static_cast<const input_t_2 *>(iter.data_ptr(2));
- int64_t grid = (numel + block_work_size() - 1) / block_work_size();
- auto stream = at::cuda::getCurrentCUDAStream();
- if (iter.is_contiguous()) {
- distribution_binary_elementwise_kernel<<<grid,num_threads(), 0, stream>>>(
- numel, f, philox_args, output_data, input_data_1, input_data_2,
- TrivialOffsetCalculator<2>(), TrivialOffsetCalculator<1>());
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- } else {
- distribution_binary_elementwise_kernel<<<grid, num_threads(), 0, stream>>>(
- numel, f, philox_args, output_data, input_data_1, input_data_2,
- make_input_offset_calculator<2>(iter), make_output_offset_calculator(iter));
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- }
- }
- } // namespace
- }} // namespace at::native
- namespace at {
- namespace native {
- namespace templates {
- namespace cuda {
- // ==================================================== Random ========================================================
- template<typename RNG>
- void random_from_to_kernel(TensorIteratorBase& iter, uint64_t range, int64_t base, RNG gen) {
- AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Bool, at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "random_from_to_kernel_cuda", [&] {
- if ((
- std::is_same<scalar_t, int64_t>::value ||
- std::is_same<scalar_t, double>::value ||
- std::is_same<scalar_t, float>::value ||
- std::is_same<scalar_t, at::BFloat16>::value) && range >= 1ULL << 32)
- {
- // define lambda to mod with range and add base
- auto random_func = [range, base] __device__ (uint64_t rand) {
- return transformation::uniform_int_from_to<scalar_t>(rand, range, base);
- };
- distribution_nullary_kernel<scalar_t, uint64_t, curand4_engine_calls/2>(iter,
- gen,
- [] __device__ (curandStatePhilox4_32_10_t* state) -> ulonglong2 {
- ulonglong2 ret;
- uint4 rand_val = curand4(state);
- ret.x = (static_cast<uint64_t>(rand_val.x) << 32) | rand_val.y;
- ret.y = (static_cast<uint64_t>(rand_val.z) << 32) | rand_val.w;
- return ret;
- },
- random_func);
- } else {
- auto random_func = [range, base] __device__ (uint32_t rand) {
- return transformation::uniform_int_from_to<scalar_t>(rand, range, base);
- };
- distribution_nullary_kernel<scalar_t, uint32_t, curand4_engine_calls>(iter,
- gen,
- [] __device__ (curandStatePhilox4_32_10_t* state) {
- return curand4(state);
- },
- random_func);
- }
- });
- }
- // This is the special kernel to handle single specific case:
- // from(inclusive) = std::numeric_limits<int64_t>::lowest()
- // to(exclusive) = None (= std::numeric_limits<int64_t>::max() + 1)
- template<typename RNG>
- void random_full_64_bits_range_kernel(TensorIteratorBase& iter, RNG gen) {
- AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::BFloat16, iter.dtype(), "random_full_64_bits_range_kernel_cuda", [&] {
- if (std::is_same<scalar_t, int64_t>::value ||
- std::is_same<scalar_t, double>::value ||
- std::is_same<scalar_t, float>::value ||
- std::is_same<scalar_t, at::BFloat16>::value) {
- auto random_func = [] __device__ (uint64_t rand) {
- return transformation::uniform_int_full_range<scalar_t>(rand);
- };
- distribution_nullary_kernel<scalar_t, uint64_t, curand4_engine_calls/2>(iter,
- gen,
- [] __device__ (curandStatePhilox4_32_10_t* state) -> ulonglong2 {
- ulonglong2 ret;
- uint4 rand_val = curand4(state);
- ret.x = (static_cast<uint64_t>(rand_val.x) << 32) | rand_val.y;
- ret.y = (static_cast<uint64_t>(rand_val.z) << 32) | rand_val.w;
- return ret;
- },
- random_func);
- } else {
- TORCH_CHECK(false, "random_full_64_bits_range_kernel_cuda handles only int64, double, float and bfloat16");
- }
- });
- }
- template<typename RNG>
- struct RandomFromToKernel {
- void operator()(TensorIteratorBase& iter, uint64_t range, int64_t base, c10::optional<Generator> gen) {
- random_from_to_kernel(iter, range, base, check_generator<RNG>(gen));
- }
- void operator()(TensorIteratorBase& iter, c10::optional<Generator> gen) {
- random_full_64_bits_range_kernel(iter, check_generator<RNG>(gen));
- }
- };
- template<typename RNG>
- void random_kernel(TensorIteratorBase& iter, RNG gen) {
- AT_DISPATCH_ALL_TYPES_AND3(at::ScalarType::Half, at::ScalarType::BFloat16, at::ScalarType::Bool, iter.dtype(), "random_kernel_cuda", [&] {
- if (std::is_same<scalar_t, double>::value || std::is_same<scalar_t, int64_t>::value) {
- auto random_func = [] __device__ (uint64_t rand) {
- return transformation::uniform_int<scalar_t>(rand);
- };
- distribution_nullary_kernel<scalar_t, uint64_t, curand4_engine_calls/2>(iter, gen,
- [] __device__ (curandStatePhilox4_32_10_t* state) -> ulonglong2 {
- ulonglong2 ret;
- uint4 rand_val = curand4(state);
- ret.x = (static_cast<uint64_t>(rand_val.x) << 32) | rand_val.y;
- ret.y = (static_cast<uint64_t>(rand_val.z) << 32) | rand_val.w;
- return ret;
- },
- random_func);
- } else {
- auto random_func = [] __device__ (uint32_t rand) {
- return transformation::uniform_int<scalar_t>(rand);
- };
- distribution_nullary_kernel<scalar_t, uint32_t, curand4_engine_calls>(iter,
- gen,
- [] __device__ (curandStatePhilox4_32_10_t* state) {
- return curand4(state);
- },
- random_func);
- }
- });
- }
- template<typename RNG>
- struct RandomKernel {
- void operator()(TensorIteratorBase& iter, RNG gen) {
- random_kernel(iter, gen);
- }
- };
- // ====================================================================================================================
- template<typename scalar_t, typename accscalar_t, size_t curand4_engine_calls, typename RNG, typename transform_t>
- void uniform_and_transform(TensorIteratorBase& iter, RNG gen, transform_t transform) {
- if (std::is_same<scalar_t, double>::value) {
- distribution_nullary_kernel<scalar_t, accscalar_t, curand4_engine_calls/2>(iter,
- gen,
- [] __device__ (curandStatePhilox4_32_10_t* state) { return curand_uniform2_double(state); },
- transform);
- } else {
- distribution_nullary_kernel<scalar_t, accscalar_t, curand4_engine_calls>(iter,
- gen,
- [] __device__ (curandStatePhilox4_32_10_t* state) { return curand_uniform4(state); },
- transform);
- }
- }
- template<typename scalar_t, typename accscalar_t, size_t curand4_engine_calls, typename RNG, typename transform_t>
- void normal_and_transform(TensorIteratorBase& iter, RNG gen, transform_t transform) {
- if (std::is_same<scalar_t, double>::value) {
- distribution_nullary_kernel<scalar_t, accscalar_t, curand4_engine_calls/2>(iter,
- gen,
- [] __device__ (curandStatePhilox4_32_10_t* state) { return curand_normal2_double(state); },
- transform);
- } else {
- distribution_nullary_kernel<scalar_t, accscalar_t, curand4_engine_calls>(iter,
- gen,
- [] __device__ (curandStatePhilox4_32_10_t* state) { return curand_normal4(state); },
- transform);
- }
- }
- // ==================================================== Normal ========================================================
- template<typename RNG>
- void normal_kernel(const TensorBase &self, double mean_, double std_, RNG gen) {
- auto iter = TensorIterator::borrowing_nullary_op(self);
- AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "normal_kernel_cuda", [&] {
- using accscalar_t = at::acc_type<scalar_t, true>;
- auto mean = static_cast<accscalar_t>(mean_);
- auto std = static_cast<accscalar_t>(std_);
- // define lambda to multiply std and add mean
- auto normal_func = [mean, std] __device__ (accscalar_t rand) {
- return static_cast<scalar_t>(transformation::normal<accscalar_t>(rand, mean, std));
- };
- normal_and_transform<scalar_t, accscalar_t, curand4_engine_calls>(iter, gen, normal_func);
- });
- }
- template<typename RNG>
- struct NormalKernel {
- void operator()(const TensorBase &self, double mean, double std, c10::optional<Generator> gen) {
- normal_kernel(self, mean, std, check_generator<RNG>(gen));
- }
- };
- // ==================================================== Uniform ========================================================
- template<typename RNG>
- void uniform_kernel(TensorIteratorBase& iter, double from_, double to_, RNG gen) {
- AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "uniform_kernel_cuda", [&] {
- auto from = static_cast<scalar_t>(from_);
- auto to = static_cast<scalar_t>(to_);
- using accscalar_t = at::acc_type<scalar_t, true>;
- auto range = static_cast<accscalar_t>(to-from);
- // define lambda to reverse bounds, multiply 'range' and add 'from_'
- auto uniform_func = [range, from] __device__ (accscalar_t rand) {
- // reverse the bounds of curand4 from (0, 1] to [0, 1)
- // Note that this method is from legacy THCTensorRandom and is likely to give
- // you more 0-s, since, the probability of gettings 1-s is higher than 0-s and
- // by reversing the bounds, we are flipping the probabilities of 1-s and 0-s.
- // BEFORE TOUCHING THIS CODE READ: https://github.com/pytorch/pytorch/issues/16706
- auto reverse_bound_rand = rand == static_cast<accscalar_t>(1.0) ? static_cast<accscalar_t>(0.0) : rand;
- return static_cast<scalar_t>(reverse_bound_rand * range + from);
- };
- uniform_and_transform<scalar_t, accscalar_t, curand4_engine_calls>(iter, gen, uniform_func);
- });
- }
- template<typename RNG>
- struct UniformKernel {
- void operator()(TensorIteratorBase& iter, double from, double to, c10::optional<Generator> gen) {
- uniform_kernel(iter, from, to, check_generator<RNG>(gen));
- }
- };
- // ================================================== LogNormal =======================================================
- template<typename RNG>
- void log_normal_kernel(TensorIteratorBase& iter, double mean_, double std_, RNG gen) {
- AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "log_normal_cuda", [&] {
- using accscalar_t = at::acc_type<scalar_t, true>;
- auto mean = static_cast<accscalar_t>(mean_);
- auto std = static_cast<accscalar_t>(std_);
- // define lambda for log_normal transformation
- auto log_normal_func = [mean, std] __device__ (accscalar_t rand) {
- return static_cast<scalar_t>(transformation::log_normal<accscalar_t>(transformation::normal<accscalar_t>(rand, mean, std)));
- };
- normal_and_transform<scalar_t, accscalar_t, curand4_engine_calls>(iter, gen, log_normal_func);
- });
- }
- template<typename RNG>
- struct LogNormalKernel {
- void operator()(TensorIteratorBase& iter, double mean, double std, c10::optional<Generator> gen) {
- log_normal_kernel(iter, mean, std, check_generator<RNG>(gen));
- }
- };
- // =================================================== Geometric ======================================================
- template<typename RNG>
- void geometric_kernel(TensorIteratorBase& iter, double p, RNG gen) {
- AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "geometric_cuda", [&] {
- using accscalar_t = at::DiscreteDistributionType<scalar_t>::type;
- // define lambda for geometric transformation
- auto geometric_func = [p] __device__ (accscalar_t rand) {
- return static_cast<scalar_t>(transformation::geometric<accscalar_t>(rand, p));
- };
- uniform_and_transform<scalar_t, accscalar_t, curand4_engine_calls>(iter, gen, geometric_func);
- });
- }
- template<typename RNG>
- struct GeometricKernel {
- void operator()(TensorIteratorBase& iter, double p, c10::optional<Generator> gen) {
- geometric_kernel(iter, p, check_generator<RNG>(gen));
- }
- };
- // ================================================== Exponential =====================================================
- template<typename RNG>
- void exponential_kernel(TensorIteratorBase& iter, double lambda_, RNG gen) {
- TORCH_CHECK(isFloatingType(iter.dtype()), "Exponential distribution is a continuous probability distribution. dtype must be a floating point but you specified ", iter.dtype());
- AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "exponential_cuda", [&] {
- using accscalar_t = at::acc_type<scalar_t, true>;
- auto lambda = static_cast<accscalar_t>(lambda_);
- // define lambda for exponential transformation
- auto exponential_func = [lambda] __device__ (accscalar_t rand) {
- return static_cast<scalar_t>(transformation::exponential<accscalar_t>(rand, lambda));
- };
- uniform_and_transform<scalar_t, accscalar_t, curand4_engine_calls>(iter, gen, exponential_func);
- });
- }
- template<typename RNG>
- struct ExponentialKernel {
- void operator()(TensorIteratorBase& iter, double lambda, c10::optional<Generator> gen) {
- exponential_kernel(iter, lambda, check_generator<RNG>(gen));
- }
- };
- // ==================================================== Cauchy ========================================================
- template<typename RNG>
- void cauchy_kernel(TensorIteratorBase& iter, double median_, double sigma_, RNG gen) {
- AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, iter.dtype(), "cauchy_cuda", [&] {
- using accscalar_t = at::acc_type<scalar_t, true>;
- auto median = static_cast<accscalar_t>(median_);
- auto sigma = static_cast<accscalar_t>(sigma_);
- // define lambda for cauchy transformation
- auto cauchy_func = [median, sigma] __device__ (accscalar_t rand) {
- return static_cast<scalar_t>(transformation::cauchy<accscalar_t>(rand, median, sigma));
- };
- uniform_and_transform<scalar_t, accscalar_t, curand4_engine_calls>(iter, gen, cauchy_func);
- });
- }
- template<typename RNG>
- struct CauchyKernel {
- void operator()(TensorIteratorBase& iter, double median, double sigma, c10::optional<Generator> gen) {
- cauchy_kernel(iter, median, sigma, check_generator<RNG>(gen));
- }
- };
- // ==================================================== Bernoulli =====================================================
- template<typename scalar_t, typename prob_t>
- void bernoulli_tensor_cuda_kernel(
- const TensorBase &ret, const at::TensorBase &p,
- PhiloxCudaState philox_args) {
- auto functor = [philox_args] __device__(
- int n, scalar_t& v1, scalar_t& v2, scalar_t& v3, scalar_t& v4,
- const prob_t& p1, const prob_t& p2, const prob_t& p3, const prob_t& p4) {
- auto seeds = at::cuda::philox::unpack(philox_args);
- curandStatePhilox4_32_10_t state;
- curand_init(std::get<0>(seeds),
- blockIdx.x * blockDim.x + threadIdx.x,
- std::get<1>(seeds),
- &state);
- // See Note [Register spilling in curand call for CUDA < 10]
- float4 rand = curand_uniform4(&state);
- switch (n) {
- case 4: {
- CUDA_KERNEL_ASSERT(0 <= p4 && p4 <= 1);
- v4 = static_cast<scalar_t>(rand.w <= p4);
- // fallthrough
- }
- case 3: {
- CUDA_KERNEL_ASSERT(0 <= p3 && p3 <= 1);
- v3 = static_cast<scalar_t>(rand.z <= p3);
- // fallthrough
- }
- case 2: {
- CUDA_KERNEL_ASSERT(0 <= p2 && p2 <= 1);
- v2 = static_cast<scalar_t>(rand.y <= p2);
- // fallthrough
- }
- case 1: {
- CUDA_KERNEL_ASSERT(0 <= p1 && p1 <= 1);
- v1 = static_cast<scalar_t>(rand.x <= p1);
- }
- }
- };
- // The template argument `4` below indicates that we want to operate on four
- // element at each time. See NOTE [ CUDA_tensor_applyN helpers ] for details.
- at::cuda::CUDA_tensor_apply2<scalar_t, prob_t, 4, decltype(functor),
- /*max_threads_per_block=*/512,
- /*min_blocks_per_sm==*/2>(ret, p, functor);
- }
- template<typename RNG>
- void bernoulli_kernel(const TensorBase &self, const TensorBase &p_, RNG gen) {
- PhiloxCudaState rng_engine_inputs;
- {
- // See Note [Acquire lock when using random generators]
- std::lock_guard<std::mutex> lock(gen->mutex_);
- rng_engine_inputs = gen->philox_cuda_state(10);
- }
- TORCH_CHECK(at::isFloatingType(p_.scalar_type()), "expected probabilities tensor to have floating type, got ", p_.scalar_type());
- // cast probabilities tensor to double for double `self` tensor, and to `float` for everything else
- const auto p_type = self.dtype() == at::kDouble ? at::kDouble : at::kFloat;
- auto p_cuda = p_.to(TensorOptions().device(self.device()).dtype(p_type));
- auto p = expand_inplace(self, p_cuda);
- AT_DISPATCH_ALL_TYPES_AND3(
- at::ScalarType::Half, at::ScalarType::BFloat16, at::ScalarType::Bool, self.scalar_type(), "bernoulli_tensor_cuda_self_", [&] {
- if (std::is_same<scalar_t, double>::value) {
- return bernoulli_tensor_cuda_kernel<double, double>(self, *p, rng_engine_inputs);
- } else {
- return bernoulli_tensor_cuda_kernel<scalar_t, float>(self, *p, rng_engine_inputs);
- }
- });
- }
- template<typename RNG>
- void bernoulli_kernel(TensorIteratorBase& iter, double p, RNG gen) {
- AT_DISPATCH_ALL_TYPES_AND3(
- at::ScalarType::Half, at::ScalarType::BFloat16, at::ScalarType::Bool, iter.dtype(), "bernoulli_scalar_cuda_", [&] {
- using accscalar_t = at::DiscreteDistributionType<scalar_t>::type;
- // define lambda for bernoulli transformation
- auto bernoulli_func = [p] __device__ (accscalar_t rand) {
- return static_cast<scalar_t>(transformation::bernoulli<accscalar_t>(rand, p));
- };
- uniform_and_transform<scalar_t, accscalar_t, curand4_engine_calls>(iter, gen, bernoulli_func);
- });
- }
- template<typename RNG>
- struct BernoulliKernel {
- void operator()(TensorIteratorBase& iter, double p, c10::optional<Generator> gen) {
- bernoulli_kernel(iter, p, check_generator<RNG>(gen));
- }
- void operator()(const TensorBase &self, const TensorBase &p_, c10::optional<Generator> gen) {
- bernoulli_kernel(self, p_, check_generator<RNG>(gen));
- }
- };
- }}}}
|