123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532 |
- #include <ATen/Config.h>
- #include <ATen/core/DimVector.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <ATen/native/cuda/CuFFTUtils.h>
- #include <ATen/native/utils/ParamsHash.h>
- #include <c10/util/accumulate.h>
- #include <c10/util/irange.h>
- #include <cufft.h>
- #include <cufftXt.h>
- #include <limits>
- #include <list>
- #include <sstream>
- #include <stdexcept>
- #include <string>
- #include <unordered_map>
- namespace at { namespace native { namespace detail {
- // Enum representing the FFT type
- enum class CuFFTTransformType : int8_t {
- C2C, // Complex-to-complex
- R2C, // Real-to-complex
- C2R, // Complex-to-real
- };
- // This struct is used to let us easily compute hashes of the
- // parameters.
- // It will be the **key** to the plan cache.
- struct CuFFTParams
- {
- int64_t signal_ndim_; // between 1 and max_rank, i.e., 1 <= signal_ndim <= 3
- // These include additional batch dimension as well.
- int64_t sizes_[max_rank + 1];
- int64_t input_strides_[max_rank + 1];
- int64_t output_strides_[max_rank + 1];
- CuFFTTransformType fft_type_;
- ScalarType value_type_;
- CuFFTParams() = default;
- CuFFTParams(IntArrayRef in_strides, IntArrayRef out_strides,
- IntArrayRef signal_sizes, CuFFTTransformType fft_type, ScalarType value_type) {
- // Padding bits must be zeroed for hashing
- memset(this, 0, sizeof(*this));
- signal_ndim_ = signal_sizes.size() - 1;
- fft_type_ = fft_type;
- value_type_ = value_type;
- TORCH_INTERNAL_ASSERT(in_strides.size() == signal_sizes.size());
- TORCH_INTERNAL_ASSERT(out_strides.size() == signal_sizes.size());
- TORCH_INTERNAL_ASSERT(1 <= signal_ndim_ && signal_ndim_ <= max_rank);
- std::copy(signal_sizes.cbegin(), signal_sizes.cend(), sizes_);
- std::copy(in_strides.cbegin(), in_strides.cend(), input_strides_);
- std::copy(out_strides.cbegin(), out_strides.cend(), output_strides_);
- }
- };
- static_assert(std::is_trivial<CuFFTParams>::value, "");
- // Returns true if the transform type has complex input
- inline bool cufft_complex_input(CuFFTTransformType type) {
- switch (type) {
- case CuFFTTransformType::C2C:
- case CuFFTTransformType::C2R:
- return true;
- case CuFFTTransformType::R2C:
- return false;
- }
- TORCH_INTERNAL_ASSERT(false);
- }
- // Returns true if the transform type has complex output
- inline bool cufft_complex_output(CuFFTTransformType type) {
- switch (type) {
- case CuFFTTransformType::C2C:
- case CuFFTTransformType::R2C:
- return true;
- case CuFFTTransformType::C2R:
- return false;
- }
- TORCH_INTERNAL_ASSERT(false);
- }
- // Create transform type enum from bools representing if input and output are complex
- inline CuFFTTransformType GetCuFFTTransformType(bool complex_input, bool complex_output) {
- if (complex_input && complex_output) {
- return CuFFTTransformType::C2C;
- } else if (complex_input && !complex_output) {
- return CuFFTTransformType::C2R;
- } else if (!complex_input && complex_output) {
- return CuFFTTransformType::R2C;
- }
- TORCH_INTERNAL_ASSERT(false, "Real to real FFTs are not supported");
- }
- class CuFFTHandle {
- ::cufftHandle handle_;
- public:
- CuFFTHandle() {
- CUFFT_CHECK(cufftCreate(&handle_));
- }
- ::cufftHandle & get() { return handle_; }
- const ::cufftHandle & get() const { return handle_; }
- ~CuFFTHandle() {
- // Not using fftDestroy() for rocFFT to work around double freeing of handles
- #if !defined(USE_ROCM)
- cufftDestroy(handle_);
- #endif
- }
- };
- __forceinline__
- static bool is_pow_of_two(int64_t x) {
- return (x & (x - 1)) == 0;
- }
- #if defined(USE_ROCM)
- using cufft_size_type = int;
- #else
- using cufft_size_type = long long int;
- #endif
- using CuFFTDimVector = c10::SmallVector<cufft_size_type, at::kDimVectorStaticSize>;
- // Struct representing a tensor in CuFFT's data layout for planning transforms
- // See NOTE [ cuFFT Embedded Strides ].
- struct CuFFTDataLayout {
- CuFFTDimVector embed;
- cufft_size_type stride, dist;
- bool must_clone, simple;
- };
- // Returns a cufft embedding for a contiguous signal of the given size.
- // e.g. if the input is cloned, this will be the resulting data layout
- // See NOTE [ cuFFT Embedded Strides ].
- inline CuFFTDataLayout cufft_simple_embed(IntArrayRef sizes, bool onesided) {
- CuFFTDataLayout layout;
- layout.simple = true;
- layout.must_clone = false;
- layout.embed.assign(sizes.cbegin() + 1, sizes.cend());
- if (onesided) {
- layout.embed.back() = sizes.back() / 2 + 1;
- }
- layout.stride = 1;
- layout.dist = 1;
- for (const auto& len : layout.embed) {
- layout.dist *= len;
- }
- return layout;
- }
- // Convert strides to a CuFFT embedded representation.
- // If strides cannot be embedded, returns a simple layout and sets must_clone flag
- // See NOTE [ cuFFT Embedded Strides ].
- inline CuFFTDataLayout as_cufft_embed(IntArrayRef strides, IntArrayRef sizes, bool onesided) {
- const auto signal_ndim = strides.size() - 1;
- CuFFTDataLayout layout;
- auto last_stride = strides[signal_ndim];
- layout.must_clone = (last_stride <= 0);
- const auto last_dim_size = onesided ?
- sizes[signal_ndim] / 2 + 1 : sizes[signal_ndim];
- const auto signal_numel = c10::multiply_integers(sizes.slice(1, sizes.size() - 2)) * last_dim_size;
- // Zero stides are not allowed, even if the batch size is one.
- // If that happens just set a dummy case
- if (sizes[0] == 1) {
- layout.dist = signal_numel;
- } else if (strides[0] == 0) {
- layout.must_clone = true;
- } else {
- layout.dist = strides[0];
- }
- // Calculate the embedding shape, or set must_clone if the strides cannot be embedded
- layout.embed.resize(signal_ndim);
- for (auto i = signal_ndim - 1; !layout.must_clone && i > 0; i--) {
- auto stride = strides[i];
- if (sizes[i] == 1) {
- layout.embed[i] = 1;
- } else if (stride > 0 && stride % last_stride == 0) {
- layout.embed[i] = stride / last_stride;
- last_stride = stride;
- } else {
- layout.must_clone = true;
- }
- }
- if (layout.must_clone) {
- // If the input needs to be cloned, assume it will be contiguous
- layout = cufft_simple_embed(sizes, onesided);
- layout.must_clone = true;
- } else {
- layout.embed[0] = sizes[1];
- layout.stride = strides[signal_ndim];
- // Determine if layout represents a simple embedding (contiguous data)
- layout.simple = [&] {
- for (const auto i : c10::irange(1, signal_ndim - 1)) {
- if (layout.embed[i] != sizes[i + 1]) {
- return false;
- }
- }
- return (layout.stride == 1 && layout.dist == signal_numel &&
- layout.embed.back() == last_dim_size);
- }();
- }
- return layout;
- }
- // This class contains all the information needed to execute a cuFFT plan:
- // 1. the plan
- // 2. whether to clone input before executing the plan
- // 3. the workspace size needed
- //
- // This class will be the **value** in the plan cache.
- // It **owns** the raw plan via a unique_ptr.
- class CuFFTConfig {
- public:
- // Only move semantics is enought for this class. Although we already use
- // unique_ptr for the plan, still remove copy constructor and assignment op so
- // we don't accidentally copy and take perf hit.
- CuFFTConfig(const CuFFTConfig&) = delete;
- CuFFTConfig& operator=(CuFFTConfig const&) = delete;
- explicit CuFFTConfig(const CuFFTParams& params):
- CuFFTConfig(
- IntArrayRef(params.input_strides_, params.signal_ndim_ + 1),
- IntArrayRef(params.output_strides_, params.signal_ndim_ + 1),
- IntArrayRef(params.sizes_, params.signal_ndim_ + 1),
- params.fft_type_,
- params.value_type_) {}
- // For complex types, strides are in units of 2 * element_size(dtype)
- // sizes are for the full signal, including batch size and always two-sided
- CuFFTConfig(IntArrayRef in_strides, IntArrayRef out_strides,
- IntArrayRef sizes, CuFFTTransformType fft_type, ScalarType dtype):
- fft_type_(fft_type), value_type_(dtype) {
- // signal sizes (excluding batch dim)
- CuFFTDimVector signal_sizes(sizes.begin() + 1, sizes.end());
- // input batch size
- const int64_t batch = sizes[0];
- const int64_t signal_ndim = sizes.size() - 1;
- // Since cuFFT has limited non-unit stride support and various constraints, we
- // use a flag to keep track throughout this function to see if we need to
- // input = input.clone();
- #if defined(USE_ROCM)
- // clone input to avoid issues with hipfft clobering the input and failing tests
- clone_input = true;
- #else
- clone_input = false;
- #endif
- // For half, base strides on the real part of real-to-complex and
- // complex-to-real transforms are not supported. Since our output is always
- // contiguous, only need to check real-to-complex case.
- if (dtype == ScalarType::Half) {
- // cuFFT on half requires compute capability of at least SM_53
- auto dev_prop = at::cuda::getCurrentDeviceProperties();
- TORCH_CHECK(dev_prop->major >= 5 && !(dev_prop->major == 5 && dev_prop->minor < 3),
- "cuFFT doesn't support signals of half type with compute "
- "capability less than SM_53, but the device containing input half "
- "tensor only has SM_", dev_prop->major, dev_prop->minor);
- for (const auto i : c10::irange(signal_ndim)) {
- TORCH_CHECK(is_pow_of_two(sizes[i + 1]),
- "cuFFT only supports dimensions whose sizes are powers of two when"
- " computing in half precision, but got a signal size of",
- sizes.slice(1));
- }
- clone_input |= in_strides.back() != 1;
- }
- CuFFTDataLayout in_layout;
- if (clone_input) {
- in_layout = cufft_simple_embed(sizes, fft_type == CuFFTTransformType::C2R);
- } else {
- in_layout = as_cufft_embed(in_strides, sizes, fft_type == CuFFTTransformType::C2R);
- }
- auto out_layout = as_cufft_embed(out_strides, sizes, fft_type == CuFFTTransformType::R2C);
- TORCH_INTERNAL_ASSERT(!out_layout.must_clone, "Out strides cannot be represented as CuFFT embedding");
- clone_input |= in_layout.must_clone;
- // Check if we can take advantage of simple data layout.
- //
- // See NOTE [ cuFFT Embedded Strides ] in native/cuda/SpectralOps.cu.
- const bool simple_layout = in_layout.simple && out_layout.simple;
- #if defined(USE_ROCM)
- hipfftType exec_type = [&]{
- if (dtype == kFloat) {
- switch (fft_type) {
- case CuFFTTransformType::C2C: return HIPFFT_C2C;
- case CuFFTTransformType::R2C: return HIPFFT_R2C;
- case CuFFTTransformType::C2R: return HIPFFT_C2R;
- }
- } else if (dtype == kDouble) {
- switch (fft_type) {
- case CuFFTTransformType::C2C: return HIPFFT_Z2Z;
- case CuFFTTransformType::R2C: return HIPFFT_D2Z;
- case CuFFTTransformType::C2R: return HIPFFT_Z2D;
- }
- }
- TORCH_CHECK(false, "hipFFT doesn't support transforms of type: ", dtype);
- }();
- #else
- cudaDataType itype, otype, exec_type;
- const auto complex_input = cufft_complex_input(fft_type);
- const auto complex_output = cufft_complex_output(fft_type);
- if (dtype == ScalarType::Float) {
- itype = complex_input ? CUDA_C_32F : CUDA_R_32F;
- otype = complex_output ? CUDA_C_32F : CUDA_R_32F;
- exec_type = CUDA_C_32F;
- } else if (dtype == ScalarType::Double) {
- itype = complex_input ? CUDA_C_64F : CUDA_R_64F;
- otype = complex_output ? CUDA_C_64F : CUDA_R_64F;
- exec_type = CUDA_C_64F;
- } else if (dtype == ScalarType::Half) {
- itype = complex_input ? CUDA_C_16F : CUDA_R_16F;
- otype = complex_output ? CUDA_C_16F : CUDA_R_16F;
- exec_type = CUDA_C_16F;
- } else {
- TORCH_CHECK(false, "cuFFT doesn't support tensor of type: ", dtype);
- }
- #endif
- // disable auto allocation of workspace to use THC allocator
- CUFFT_CHECK(cufftSetAutoAllocation(plan(), /* autoAllocate */ 0));
- size_t ws_size_t;
- // make plan
- if (simple_layout) {
- // If with unit-stride, we tell cuFFT by setting inembed == onembed == NULL.
- // In such case, cuFFT ignores istride, ostride, idist, and odist
- // by assuming istride = ostride = 1.
- //
- // See NOTE [ cuFFT Embedded Strides ] in native/cuda/SpectralOps.cu.
- #if defined(USE_ROCM)
- CUFFT_CHECK(hipfftMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
- /* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1,
- /* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1,
- exec_type, batch, &ws_size_t));
- #else
- CUFFT_CHECK(cufftXtMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
- /* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype,
- /* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype,
- batch, &ws_size_t, exec_type));
- #endif
- } else {
- #if defined(USE_ROCM)
- CUFFT_CHECK(hipfftMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
- in_layout.embed.data(), in_layout.stride, in_layout.dist,
- out_layout.embed.data(), out_layout.stride, out_layout.dist,
- exec_type, batch, &ws_size_t));
- #else
- CUFFT_CHECK(cufftXtMakePlanMany(plan(), signal_ndim, signal_sizes.data(),
- in_layout.embed.data(), in_layout.stride, in_layout.dist, itype,
- out_layout.embed.data(), out_layout.stride, out_layout.dist, otype,
- batch, &ws_size_t, exec_type));
- #endif
- }
- ws_size = static_cast<int64_t>(ws_size_t);
- }
- const cufftHandle &plan() const { return plan_ptr.get(); }
- CuFFTTransformType transform_type() const { return fft_type_; }
- ScalarType data_type() const { return value_type_; }
- bool should_clone_input() const { return clone_input; }
- int64_t workspace_size() const { return ws_size; }
- private:
- CuFFTHandle plan_ptr;
- bool clone_input;
- int64_t ws_size;
- CuFFTTransformType fft_type_;
- ScalarType value_type_;
- };
- #if defined(USE_ROCM)
- // Note that the max plan number for CUDA version < 10 has to be 1023
- // due to a bug that fails on the 1024th plan
- constexpr int64_t CUFFT_MAX_PLAN_NUM = 1023;
- constexpr int64_t CUFFT_DEFAULT_CACHE_SIZE = CUFFT_MAX_PLAN_NUM;
- #else
- constexpr int64_t CUFFT_MAX_PLAN_NUM = std::numeric_limits<int64_t>::max();
- // The default max cache size chosen for CUDA version > 10 is arbitrary.
- // This number puts a limit on how big of a plan cache should we maintain by
- // default. Users can always configure it via cufft_set_plan_cache_max_size.
- constexpr int64_t CUFFT_DEFAULT_CACHE_SIZE = 4096;
- #endif
- static_assert(0 <= CUFFT_MAX_PLAN_NUM && CUFFT_MAX_PLAN_NUM <= std::numeric_limits<int64_t>::max(),
- "CUFFT_MAX_PLAN_NUM not in size_t range");
- static_assert(CUFFT_DEFAULT_CACHE_SIZE >= 0 && CUFFT_DEFAULT_CACHE_SIZE <= CUFFT_MAX_PLAN_NUM,
- "CUFFT_DEFAULT_CACHE_SIZE not in [0, CUFFT_MAX_PLAN_NUM] range");
- // This cache assumes that the mapping from key to value never changes.
- // This is **NOT** thread-safe. Please use a mutex when using it **AND** the
- // value returned from try_emplace_value.
- // The contract of using this cache is that try_emplace_value should only be
- // used when the max_size is positive.
- class CuFFTParamsLRUCache {
- public:
- using kv_t = typename std::pair<CuFFTParams, CuFFTConfig>;
- using map_t = typename std::unordered_map<std::reference_wrapper<CuFFTParams>,
- typename std::list<kv_t>::iterator,
- ParamsHash<CuFFTParams>,
- ParamsEqual<CuFFTParams>>;
- using map_kkv_iter_t = typename map_t::iterator;
- CuFFTParamsLRUCache() : CuFFTParamsLRUCache(CUFFT_DEFAULT_CACHE_SIZE) {}
- CuFFTParamsLRUCache(int64_t max_size) {
- _set_max_size(max_size);
- }
- CuFFTParamsLRUCache(CuFFTParamsLRUCache&& other) noexcept :
- _usage_list(std::move(other._usage_list)),
- _cache_map(std::move(other._cache_map)),
- _max_size(other._max_size) {}
- CuFFTParamsLRUCache& operator=(CuFFTParamsLRUCache&& other) noexcept {
- _usage_list = std::move(other._usage_list);
- _cache_map = std::move(other._cache_map);
- _max_size = other._max_size;
- return *this;
- }
- // If key is in this cache, return the cached config. Otherwise, emplace the
- // config in this cache and return it.
- // Return const reference because CuFFTConfig shouldn't be tampered with once
- // created.
- const CuFFTConfig &lookup(CuFFTParams params) {
- AT_ASSERT(_max_size > 0);
- map_kkv_iter_t map_it = _cache_map.find(params);
- // Hit, put to list front
- if (map_it != _cache_map.end()) {
- _usage_list.splice(_usage_list.begin(), _usage_list, map_it->second);
- return map_it->second->second;
- }
- // Miss
- // remove if needed
- if (_usage_list.size() >= _max_size) {
- auto last = _usage_list.end();
- last--;
- _cache_map.erase(last->first);
- _usage_list.pop_back();
- }
- // construct new plan at list front, then insert into _cache_map
- _usage_list.emplace_front(std::piecewise_construct,
- std::forward_as_tuple(params),
- std::forward_as_tuple(params));
- auto kv_it = _usage_list.begin();
- _cache_map.emplace(std::piecewise_construct,
- std::forward_as_tuple(kv_it->first),
- std::forward_as_tuple(kv_it));
- return kv_it->second;
- }
- void clear() {
- _cache_map.clear();
- _usage_list.clear();
- }
- void resize(int64_t new_size) {
- _set_max_size(new_size);
- auto cur_size = _usage_list.size();
- if (cur_size > _max_size) {
- auto delete_it = _usage_list.end();
- for (size_t i = 0; i < cur_size - _max_size; i++) {
- delete_it--;
- _cache_map.erase(delete_it->first);
- }
- _usage_list.erase(delete_it, _usage_list.end());
- }
- }
- size_t size() const { return _cache_map.size(); }
- size_t max_size() const noexcept { return _max_size; }
- std::mutex mutex;
- private:
- // Only sets size and does value check. Does not resize the data structures.
- void _set_max_size(int64_t new_size) {
- // We check that 0 <= new_size <= CUFFT_MAX_PLAN_NUM here. Since
- // CUFFT_MAX_PLAN_NUM is of type size_t, we need to do non-negativity check
- // first.
- TORCH_CHECK(new_size >= 0,
- "cuFFT plan cache size must be non-negative, but got ", new_size);
- TORCH_CHECK(new_size <= CUFFT_MAX_PLAN_NUM,
- "cuFFT plan cache size can not be larger than ", CUFFT_MAX_PLAN_NUM, ", but got ", new_size);
- _max_size = static_cast<size_t>(new_size);
- }
- std::list<kv_t> _usage_list;
- map_t _cache_map;
- size_t _max_size;
- };
- // Since ATen is separated into CPU build and CUDA build, we need a way to call
- // these functions only when CUDA is loaded. We use CUDA hooks for this purpose
- // (at cuda/detail/CUDAHooks.cpp), and call the hooked functions from the actual
- // native function counterparts (at native/SpectralOps.cpp), i.e.,
- // _cufft_get_plan_cache_max_size, _cufft_set_plan_cache_max_size
- // _cufft_get_plan_cache_size, and _cufft_clear_plan_cache.
- int64_t cufft_get_plan_cache_max_size_impl(int64_t device_index);
- void cufft_set_plan_cache_max_size_impl(int64_t device_index, int64_t max_size);
- int64_t cufft_get_plan_cache_size_impl(int64_t device_index);
- void cufft_clear_plan_cache_impl(int64_t device_index);
- }}} // namespace at::native::detail
|