123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- #pragma once
- // This file provides two functions to help write GPU elementwise kernels:
- //
- // gpu_kernel(TensorIterator iter, <lambda>)
- // gpu_kernel_with_scalars(TensorIterator iter, <lambda>)
- //
- // The gpu_kernel_with_scalars generates specializations that support a
- // single scalar CPU argument, such as from `cuda_tensor + 5`. The CPU scalar
- // is lifted to a kernel parameter instead of copying to device memory.
- // This should be used in conjunction with TensorIterator::allow_cpu_scalars_,
- // which is the default for TensorIterator::binary_op. Otherwise, all inputs
- // and the output must be on the GPU.
- //
- // For example, to write a reciprocal kernel for GPU float Tensors:
- //
- // gpu_kernel(iter, []GPU_LAMBDA(float a) {
- // return 1.0f / a;
- // });
- //
- // To write a multiplication kernel for GPU float Tensors where one argument
- // may be a CPU scalar:
- //
- // gpu_kernel_with_scalars(iter, []GPU_LAMBDA(float a, float b) {
- // return a * b;
- // });
- //
- // See BinaryOpsKernel.cu for the complete implementation
- //
- #include <type_traits>
- #include <tuple>
- #include <iostream>
- #include <ATen/cuda/CUDAContext.h>
- #include <ATen/core/Array.h>
- #include <ATen/detail/FunctionTraits.h>
- #include <ATen/native/TensorIterator.h>
- #include <c10/macros/Macros.h>
- #include <c10/core/DynamicCast.h>
- #include <c10/core/ScalarType.h>
- #include <c10/util/TypeCast.h>
- #include <c10/util/C++17.h>
- #ifdef __NVCC__
- #define ASSERT_HOST_DEVICE_LAMBDA(type) \
- static_assert(__nv_is_extended_host_device_lambda_closure_type(type), \
- #type " must be a __host__ __device__ lambda")
- #else
- #define ASSERT_HOST_DEVICE_LAMBDA(type)
- #endif
- namespace at { namespace native {
- template<int vec_size, typename func_t, typename array_t>
- C10_LAUNCH_BOUNDS_1(num_threads())
- __global__ void vectorized_elementwise_kernel(int N, func_t f, array_t data) {
- using traits = function_traits<func_t>;
- int remaining = N - block_work_size() * blockIdx.x;
- if (remaining < block_work_size()) { // if this block handles the reminder, just do a naive unrolled loop
- auto input_calc = TrivialOffsetCalculator<traits::arity>();
- auto output_calc = TrivialOffsetCalculator<1>();
- auto loader = memory::LoadWithoutCast();
- auto storer = memory::StoreWithoutCast();
- auto policy = memory::policies::unroll<array_t, decltype(input_calc), decltype(output_calc),
- memory::LoadWithoutCast, memory::StoreWithoutCast>(
- data, remaining, input_calc, output_calc, loader, storer);
- elementwise_kernel_helper(f, policy);
- } else { // if this block has a full `block_work_size` data to handle, use vectorized memory access
- elementwise_kernel_helper(f, memory::policies::vectorized<vec_size, array_t>(data));
- }
- }
- template<typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t, typename loader_t, typename storer_t>
- C10_LAUNCH_BOUNDS_1(num_threads())
- __global__ void unrolled_elementwise_kernel(int N, func_t f, array_t data,
- inp_calc_t ic, out_calc_t oc, loader_t l, storer_t s)
- {
- int remaining = N - block_work_size() * blockIdx.x;
- auto policy = memory::policies::unroll<array_t, inp_calc_t, out_calc_t, loader_t, storer_t>(data, remaining, ic, oc, l, s);
- elementwise_kernel_helper(f, policy);
- }
- // this function assume trivial 1d and no dynamic casting
- template<typename func_t, typename array_t>
- static inline void launch_vectorized_kernel(int64_t N, const func_t& f, array_t data) {
- TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
- using traits = function_traits<func_t>;
- int64_t grid = (N + block_work_size() - 1) / block_work_size();
- auto stream = at::cuda::getCurrentCUDAStream();
- int vec_size = memory::can_vectorize_up_to<func_t>(data);
- switch (vec_size) {
- case 4:
- vectorized_elementwise_kernel<4, func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- break;
- case 2:
- vectorized_elementwise_kernel<2, func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- break;
- case 1: {
- auto input_calc = TrivialOffsetCalculator<traits::arity>();
- auto output_calc = TrivialOffsetCalculator<1>();
- auto loader = memory::LoadWithoutCast();
- auto storer = memory::StoreWithoutCast();
- unrolled_elementwise_kernel<func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data, input_calc, output_calc, loader, storer);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- break;
- }
- default:
- TORCH_INTERNAL_ASSERT(false, "Unexpected vectorization size");
- }
- }
- template<typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t, typename loader_t, typename storer_t>
- static inline void launch_unrolled_kernel(int64_t N, const func_t& f, array_t data,
- inp_calc_t ic, out_calc_t oc, loader_t l, storer_t s)
- {
- TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
- int64_t grid = (N + block_work_size() - 1) / block_work_size();
- auto stream = at::cuda::getCurrentCUDAStream();
- unrolled_elementwise_kernel<func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data, ic, oc, l, s);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- }
- template<int nt, int vt, typename func_t>
- C10_LAUNCH_BOUNDS_2(nt, 4)
- __global__ void elementwise_kernel(int N, func_t f) {
- int tid = threadIdx.x;
- int nv = nt * vt;
- int idx = nv * blockIdx.x + tid;
- #pragma unroll
- for (int i = 0; i < vt; i++) {
- if (idx < N) {
- f(idx);
- idx += nt;
- }
- }
- }
- template<int nt, int vt, typename func_t>
- static void launch_legacy_kernel(int64_t N, const func_t& f) {
- TORCH_INTERNAL_ASSERT(N >= 0 && N <= std::numeric_limits<int32_t>::max());
- if (N == 0) {
- return;
- }
- dim3 block(nt);
- dim3 grid((N + block.x * vt - 1) / (block.x * vt));
- auto stream = at::cuda::getCurrentCUDAStream();
- elementwise_kernel<nt, vt, func_t><<<grid, block, 0, stream>>>(N, f);
- C10_CUDA_KERNEL_LAUNCH_CHECK();
- }
- template <typename traits, typename func_t, typename index_t, size_t... INDEX>
- C10_HOST_DEVICE typename traits::result_type
- invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i,
- std::index_sequence<INDEX...>) {
- (void)strides;
- (void)i;
- return f(c10::load<typename traits::template arg<INDEX>::type>(data[INDEX] + i * strides[INDEX])...);
- }
- template <typename func_t, typename index_t, typename traits = function_traits<func_t>>
- C10_HOST_DEVICE typename traits::result_type
- invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i) {
- using Indices = std::make_index_sequence<traits::arity>;
- return invoke_impl<traits>(f, data, strides, i, Indices{});
- }
- template <typename traits, typename func_t, typename index_t, size_t... I>
- C10_HOST_DEVICE typename traits::result_type
- invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i,
- std::index_sequence<I...>) {
- (void)strides;
- (void)i;
- return f(c10::fetch_and_cast<typename traits::template arg<I>::type>(dtypes[I], data[I] + i * strides[I])...);
- }
- template <typename func_t, typename index_t, typename traits = function_traits<func_t>>
- C10_HOST_DEVICE typename traits::result_type
- invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i) {
- using Indices = std::make_index_sequence<traits::arity>;
- return invoke_impl<traits>(f, data, strides, dtypes, i, Indices{});
- }
- template <typename func_t>
- void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
- using traits = function_traits<func_t>;
- using arg0_t = typename traits::result_type;
- constexpr int ntensors = traits::arity + 1;
- TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
- TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
- TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
- at::detail::Array<char*, ntensors> data;
- for (int i = 0; i < ntensors; i++) {
- data[i] = (char*)iter.data_ptr(i);
- }
- int64_t numel = iter.numel();
- bool contiguous = iter.is_contiguous();
- bool dynamic_casting = needs_dynamic_casting<func_t>::check(iter);
- if (!dynamic_casting) {
- if (contiguous) {
- launch_vectorized_kernel(numel, f, data);
- } else {
- auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
- constexpr int unroll_factor = sizeof(arg0_t) >= 4 ? 2 : 4;
- launch_legacy_kernel<128,unroll_factor>(numel, [=]GPU_LAMBDA(int idx) {
- auto offsets = offset_calc.get(idx);
- arg0_t* out = (arg0_t*)(data[0] + offsets[0]);
- *out = invoke(f, &data.data[1], &offsets.data[1], 1);
- });
- }
- } else {
- if (contiguous) {
- auto loader = memory::LoadWithCast<traits::arity>(iter);
- auto storer = memory::StoreWithCast<1>(iter);
- auto input_offset_calculator = TrivialOffsetCalculator<traits::arity>();
- auto output_offset_calculator = TrivialOffsetCalculator<1>();
- launch_unrolled_kernel(numel, f, data, input_offset_calculator, output_offset_calculator, loader, storer);
- } else {
- at::detail::Array<ScalarType, ntensors> dtypes;
- for (int i = 0; i < ntensors; i++) {
- dtypes[i] = iter.dtype(i);
- }
- auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
- launch_legacy_kernel<128, 4>(numel, [=]GPU_LAMBDA(int idx) {
- auto offsets = offset_calc.get(idx);
- void* out = data[0] + offsets[0];
- arg0_t result = invoke(f, &data.data[1], &offsets.data[1], &dtypes.data[1], 1);
- c10::cast_and_store<arg0_t>(dtypes[0], out, result);
- });
- }
- }
- }
- }} // namespace at::native
|