123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- #pragma once
- #include <ATen/Parallel.h>
- #include <ATen/cpu/vec/vec.h>
- #include <c10/util/llvmMathExtras.h>
- #ifdef USE_FBGEMM
- #include <fbgemm/Fbgemm.h>
- #endif
- namespace at {
- namespace native {
- inline namespace CPU_CAPABILITY {
- template <typename T>
- inline T data_index_init(T offset) {
- return offset;
- }
- template <typename T, typename... Args>
- inline T data_index_init(T offset, T& x, const T& X, Args&&... args) {
- offset = data_index_init(offset, std::forward<Args>(args)...);
- x = offset % X;
- return offset / X;
- }
- inline bool data_index_step() {
- return true;
- }
- template <typename T, typename... Args>
- inline bool data_index_step(T& x, const T& X, Args&&... args) {
- if (data_index_step(std::forward<Args>(args)...)) {
- x = ((x + 1) == X) ? 0 : (x + 1);
- return x == 0;
- }
- return false;
- }
- // Helper struct for bfloat16 vectorization
- // Useful when you need float as immediate dtype or accumulate dtype
- using namespace vec;
- struct Vec2 {
- Vectorized<float> val0, val1;
- Vec2(Vectorized<float> v0, Vectorized<float> v1) : val0(v0), val1(v1) {}
- Vec2(float v) : val0(v), val1(v) {}
- static Vec2 loadu(const BFloat16* ptr) {
- Vectorized<float> v0, v1;
- std::tie(v0, v1) = convert_bfloat16_float(Vectorized<BFloat16>::loadu(ptr));
- return {v0, v1};
- }
- void store(BFloat16* ptr) const {
- Vectorized<BFloat16> val = convert_float_bfloat16(val0, val1);
- val.store(ptr);
- }
- };
- inline Vec2 operator+(const Vec2& a, const Vec2& b) { return {a.val0 + b.val0, a.val1 + b.val1}; }
- inline Vec2 operator*(const Vec2& a, const Vec2& b) { return {a.val0 * b.val0, a.val1 * b.val1}; }
- template <typename scalar_t> struct VectorizedType { using type = Vectorized<scalar_t>; };
- template <> struct VectorizedType<BFloat16> { using type = Vec2; };
- template <typename scalar_t> using VecType = typename VectorizedType<scalar_t>::type;
- // Helper for mixed data type parameter Vec::load
- inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const BFloat16* ptr) {
- return convert_bfloat16_float(Vectorized<BFloat16>::loadu(ptr));
- }
- inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const float* ptr) {
- using Vec = Vectorized<float>;
- return std::make_tuple(Vec::loadu(ptr), Vec::loadu(ptr + Vec::size()));
- }
- inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const BFloat16* ptr, int64_t count) {
- return convert_bfloat16_float(Vectorized<BFloat16>::loadu(ptr, count));
- }
- inline std::tuple<Vectorized<float>, Vectorized<float>> load2f(const float* ptr, int64_t count) {
- using Vec = Vectorized<float>;
- if (count > Vec::size()) {
- return std::make_tuple(Vec::loadu(ptr), Vec::loadu(ptr + Vec::size(), count - Vec::size()));
- } else {
- return std::make_tuple(Vec::loadu(ptr, count), Vec(0));
- }
- }
- } // namespace
- namespace utils {
- template <typename T>
- T CeilLog2(const T& x) {
- if (x <= 2) {
- return 1;
- }
- // Last set bit is floor(log2(x)), floor + 1 is ceil
- // except when x is an exact powers of 2, so subtract 1 first
- return static_cast<T>(llvm::findLastSet(static_cast<uint64_t>(x) - 1)) + 1;
- }
- // matrix transpose:
- // src has shape of M by N, with leading dimension of ld_src
- // dst has shape of N by M, with leading dimension of ld_dst
- template <typename T>
- inline void transpose(int64_t M, int64_t N, const T* src, int64_t ld_src, T* dst, int64_t ld_dst) {
- for (int64_t j = 0; j < N; j++) {
- for (int64_t i = 0; i < M; i++) {
- dst[j * ld_dst + i] = src[i * ld_src + j];
- }
- }
- }
- #ifdef USE_FBGEMM
- template <>
- inline void transpose<float>(int64_t M, int64_t N, const float* src, int64_t ld_src, float* dst, int64_t ld_dst) {
- TORCH_CHECK(fbgemm::fbgemmSupportedCPU(), "Your CPU does not support FBGEMM.");
- fbgemm::transpose_simd<float>(M, N, src, ld_src, dst, ld_dst);
- }
- #endif
- template <typename index_t, typename F>
- inline void parallel_sparse_csr(
- const TensorAccessor<index_t, 1>& crow_acc,
- const int64_t M,
- const int64_t nnz,
- const F& f) {
- TORCH_CHECK(crow_acc.size(0) == M + 1);
- // directly parallel on `M` may lead to load imbalance,
- // statically determine thread partition here to average payload
- // for each thread.
- int num_threads = at::get_num_threads();
- std::vector<int64_t> thread_splits(num_threads + 1, M);
- int64_t thread_averge_payload = std::max((int64_t)1, divup(nnz, num_threads));
- thread_splits[0] = 0;
- int64_t sum = 0;
- int64_t t = 1;
- for (const auto m : c10::irange(M)) {
- int64_t row_start = crow_acc[m];
- int64_t row_end = crow_acc[m + 1];
- sum += row_end - row_start;
- if (sum > t * thread_averge_payload) {
- thread_splits[t] = m;
- t++;
- }
- }
- // need to restore the last index,
- // due to rounding error when calculating `thread_averge_payload`.
- thread_splits[num_threads] = M;
- at::parallel_for(0, num_threads, 1, [&](int64_t cbegin, int64_t cend) {
- int tid = at::get_thread_num();
- int64_t begin = thread_splits[tid];
- int64_t end = thread_splits[tid + 1];
- f(begin, end);
- });
- }
- } // namespace utils
- } // namespace native
- } // namespace at
|