123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719 |
- /*
- The Python Imaging Library (PIL) is
- Copyright © 1997-2011 by Secret Labs AB
- Copyright © 1995-2011 by Fredrik Lundh
- Pillow is the friendly PIL fork. It is
- Copyright © 2010-2022 by Alex Clark and contributors
- Like PIL, Pillow is licensed under the open source HPND License
- */
- // This code is heavily inspired from PILLOW-SIMD's implementation:
- // https://github.com/uploadcare/pillow-simd/blob/simd/master/src/libImaging/Resample.c
- #pragma once
- #ifdef CPU_CAPABILITY_AVX2
- // TODO: This file only supports AVX2. We could split the AVX kernels into
- // smaller logical blocks in order to port them into the Vec.h logic. This would
- // allow to support other vectorization architectures and perhaps also support
- // the non-vectorized fallback (we'd need to make sure it's not slower than the
- // current fallback).
- #include <ATen/core/Tensor.h>
- #include <ATen/cpu/vec/intrinsics.h>
- #include <c10/util/irange.h>
- #ifndef AT_PER_OPERATOR_HEADERS
- #include <ATen/Functions.h>
- #else
- #include <ATen/ops/empty.h>
- #endif
- namespace {
- static __m128i inline mm_cvtepu8_epi32(const uint32_t* C10_RESTRICT ptr) {
- return _mm_cvtepu8_epi32(_mm_cvtsi32_si128(*(int32_t*)ptr));
- }
- // TODO: We may want to hard-code an unrolled version for the case where
- // num_channels=3 to hint the compiler to vectorize this (looks at original
- // PIL-SIMD's code).
- at::Tensor unpack_rgb(const at::Tensor& packed_tensor) {
- // Convert a "packed" tensor (typically RGBRGBRGB if channels_last) into
- // RGBARGBARGBA format where A is hard-coded to 255. Each pixel is encoded
- // into as 32bits. This generalizes to num_channels <= 4 and also works for
- // non-channels_last tensors.
- const uint8_t* packed = (const uint8_t*)packed_tensor.data_ptr<uint8_t>();
- auto num_pixels = packed_tensor.size(1) * packed_tensor.size(2);
- auto num_channels = packed_tensor.size(0);
- constexpr int rgba_size = 4;
- auto unpacked_tensor = at::empty({rgba_size, packed_tensor.size(1), packed_tensor.size(2)}, at::CPU(at::kByte));
- uint8_t* unpacked = (uint8_t*) unpacked_tensor.data_ptr<uint8_t>();
- auto stride_i = packed_tensor.stride(2);
- auto stride_j = packed_tensor.stride(0);
- for (const auto i : c10::irange(num_pixels)) {
- for (const auto j : c10::irange(rgba_size)) {
- unpacked[rgba_size * i + j] = (j < num_channels) ? packed[stride_i * i + stride_j * j] : 0;
- }
- }
- return unpacked_tensor;
- }
- void pack_rgb(
- const at::Tensor& unpacked_tensor, // IN
- const at::Tensor& packed_tensor // OUT
- ) {
- constexpr int rgba_size = 4;
- uint8_t* unpacked = (uint8_t*)unpacked_tensor.data_ptr<uint8_t>();
- uint8_t* packed = (uint8_t*)packed_tensor.data_ptr<uint8_t>();
- auto num_pixels = packed_tensor.size(1) * packed_tensor.size(2);
- auto num_channels = packed_tensor.size(0);
- auto packed_increment = packed_tensor.stride(2);
- auto packed_stride = packed_tensor.stride(0);
- for (const auto i C10_UNUSED : c10::irange(num_pixels)) {
- for (const auto j : c10::irange(num_channels)) {
- packed[j * packed_stride] = unpacked[j];
- }
- unpacked += rgba_size;
- packed += packed_increment;
- }
- }
- void ImagingResampleHorizontalConvolution8u4x(
- uint32_t* C10_RESTRICT lineOut0,
- uint32_t* C10_RESTRICT lineOut1,
- uint32_t* C10_RESTRICT lineOut2,
- uint32_t* C10_RESTRICT lineOut3,
- const uint32_t* C10_RESTRICT lineIn0,
- const uint32_t* C10_RESTRICT lineIn1,
- const uint32_t* C10_RESTRICT lineIn2,
- const uint32_t* C10_RESTRICT lineIn3,
- int xsize,
- int* xbounds,
- int16_t* kk,
- int kmax,
- int coefs_precision);
- void ImagingResampleHorizontalConvolution8u(
- uint32_t* C10_RESTRICT lineOut,
- const uint32_t* C10_RESTRICT lineIn,
- int xsize,
- int* xbounds,
- int16_t* kk,
- int kmax,
- int coefs_precision);
- void ImagingResampleVerticalConvolution8u(
- uint32_t* C10_RESTRICT lineOut,
- const uint32_t* C10_RESTRICT imIn,
- int xmin,
- int xmax,
- int16_t* k,
- int coefs_precision,
- int xin);
- void ImagingResampleHorizontal(
- const at::Tensor & unpacked_output,
- const at::Tensor & unpacked_input,
- int ksize,
- const std::vector<at::Tensor>& horiz_indices_weights,
- unsigned int horiz_weights_precision) {
- // TODO: we may want to merge that into the fallback code (currently called
- // basic_loop_aa_horizontal<uint8_t>)
- // Although this may not be needed if / when we port all this code to use
- // Vec.h since this would potentially give us another fall-back implem
- int yy;
- int16_t* kk = (int16_t*)(horiz_indices_weights[3].data_ptr<double>());
- auto xout = unpacked_output.size(2);
- auto yout = unpacked_output.size(1);
- auto xin = unpacked_input.size(2);
- std::vector<int> bounds_vec(2 * xout, 0);
- int* bounds = bounds_vec.data();
- int64_t* idx_ptr_xmin = horiz_indices_weights[0].data_ptr<int64_t>();
- int64_t* idx_ptr_size = horiz_indices_weights[1].data_ptr<int64_t>();
- for (int i = 0; i < xout; i++) {
- bounds[2 * i + 0] = idx_ptr_xmin[i];
- bounds[2 * i + 1] = idx_ptr_size[i];
- }
- uint32_t* unpacked_input_p = (uint32_t*) unpacked_input.data_ptr<uint8_t>();
- uint32_t* unpacked_output_p = (uint32_t*) unpacked_output.data_ptr<uint8_t>();
- yy = 0;
- for (; yy < yout - 3; yy += 4) {
- ImagingResampleHorizontalConvolution8u4x(
- unpacked_output_p + yy * xout,
- unpacked_output_p + (yy + 1) * xout,
- unpacked_output_p + (yy + 2) * xout,
- unpacked_output_p + (yy + 3) * xout,
- unpacked_input_p + yy * xin,
- unpacked_input_p + (yy + 1) * xin,
- unpacked_input_p + (yy + 2) * xin,
- unpacked_input_p + (yy + 3) * xin,
- xout,
- bounds,
- kk,
- ksize,
- (int)horiz_weights_precision);
- }
- for (; yy < yout; yy++) {
- ImagingResampleHorizontalConvolution8u(
- unpacked_output_p + yy * xout,
- unpacked_input_p + yy * xin,
- xout,
- bounds,
- kk,
- ksize,
- (int)horiz_weights_precision);
- }
- }
- void ImagingResampleVertical(
- const at::Tensor & unpacked_output,
- const at::Tensor & unpacked_input,
- int ksize,
- const std::vector<at::Tensor>& vert_indices_weights,
- unsigned int vert_weights_precision) {
- // TODO: we may want to merge that into the fallback code (currently called
- // basic_loop_aa_vertical<uint8_t>)
- // Although this may not be needed if / when we port all this code to use
- // Vec.h since this would potentially give us another fall-back implem
- int ymin, ymax;
- int16_t* k = nullptr;
- int16_t* kk = (int16_t*)(vert_indices_weights[3].data_ptr<double>());
- int64_t* idx_ptr_xmin = vert_indices_weights[0].data_ptr<int64_t>();
- int64_t* idx_ptr_size = vert_indices_weights[1].data_ptr<int64_t>();
- uint32_t* unpacked_output_p = (uint32_t*) unpacked_output.data_ptr<uint8_t>();
- uint32_t* unpacked_input_p = (uint32_t*) unpacked_input.data_ptr<uint8_t>();
- auto xout = unpacked_output.size(2);
- auto yout = unpacked_output.size(1);
- for (const auto yy : c10::irange(yout)) {
- k = &kk[yy * ksize];
- ymin = idx_ptr_xmin[yy];
- ymax = idx_ptr_size[yy];
- ImagingResampleVerticalConvolution8u(
- unpacked_output_p + yy * xout,
- unpacked_input_p,
- ymin,
- ymax,
- k,
- (int)vert_weights_precision,
- xout);
- }
- }
- // This is the only public entry point in this file. It supports bilinear
- // mode for uint8 dtype when C <= 4, with or without antialias. The
- // implem is based on PIL-SIMD.
- // Its equivalent implementation (fallback) for when AVX isn't supported or when
- // C > 4 is separable_upsample_generic_Nd_kernel_impl() There are a bunch of
- // future improvement that can be done: look for the TODOs in this file.
- // For details on how the weights are computed and how the multiplications are
- // run on int (instead of float weights), see
- // [ Weights computation for uint8_t and multiplication trick ]
- // For details on how the AVX kernels are implemented, see
- // https://gist.github.com/NicolasHug/47c97d731f05eaad5694c173849b86f5
- // See also [ Support for antialias=False as a subcase of antilias=True ] to
- // learn more about how the antialias=False case is computed. The same holds
- // here: all these kernels are general enough to handle an arbitrary number of
- // weights, but when aa=False they could be optimized further.
- template <typename scale_type, class F>
- void upsample_avx_bilinear_uint8(
- const at::Tensor& input,
- const at::Tensor& output,
- bool align_corners,
- const scale_type& scales,
- bool antialias) {
- auto batch_size = input.size(0);
- auto num_channels = input.size(1);
- auto xin = input.size(3);
- auto yin = input.size(2);
- auto xout = output.size(3);
- auto yout = output.size(2);
- if (xin == xout && yin == yout) {
- output.copy_(input);
- return;
- }
- auto need_horizontal = xout != xin;
- auto need_vertical = yout != yin;
- int ksize_horiz, ksize_vert;
- std::vector<at::Tensor> horiz_indices_weights, vert_indices_weights;
- unsigned int horiz_weights_precision, vert_weights_precision;
- if (need_horizontal) {
- int interp_dim = 3;
- std::tie(horiz_indices_weights, ksize_horiz, horiz_weights_precision) =
- F::compute_indices_int16_weights_aa(
- /*input_size=*/xin,
- /*output_size=*/xout,
- /*stride=*/1,
- /*ndims=*/4,
- /*reshape_dim=*/interp_dim,
- /*align_corners=*/align_corners,
- /*opt_scale=*/scales[interp_dim - 2],
- /*antialias=*/antialias,
- /*align_i32=*/true);
- }
- if (need_vertical) {
- int interp_dim = 2;
- std::tie(vert_indices_weights, ksize_vert, vert_weights_precision) =
- F::compute_indices_int16_weights_aa(
- /*input_size=*/yin,
- /*output_size=*/yout,
- /*stride=*/1,
- /*ndims=*/4,
- /*reshape_dim=*/interp_dim,
- /*align_corners=*/align_corners,
- /*opt_scale=*/scales[interp_dim - 2],
- /*antialias=*/antialias,
- /*align_i32=*/true);
- }
- bool is_rgba = num_channels == 4 && input.is_contiguous(at::MemoryFormat::ChannelsLast);
- at::Tensor buffer_horiz, buffer_vert;
- if (need_horizontal && !(is_rgba && !need_vertical)) {
- buffer_horiz = at::empty({4, yin, xout}, input.options());
- }
- if (need_vertical && !is_rgba) {
- buffer_vert = at::empty({4, yout, xout}, input.options());
- }
- // TODO: The unpack / pack operations create a copy of the original input and
- // output tensor. There should be a way to avoid these copies by instead
- // modifying the low-level kernels. Or maybe at least avoid copying the entire
- // tensors and just copy part of them (line by line).
- for (const auto i : c10::irange(batch_size)) {
- at::Tensor unpacked_input = (is_rgba) ? input[i] : unpack_rgb(input[i]);
- at::Tensor unpacked_output;
- if (need_horizontal) {
- at::Tensor unpacked_output_temp = (is_rgba && !need_vertical) ? output[i] : buffer_horiz;
- ImagingResampleHorizontal(
- unpacked_output_temp,
- unpacked_input,
- ksize_horiz,
- horiz_indices_weights,
- horiz_weights_precision);
- unpacked_output = unpacked_input = unpacked_output_temp;
- }
- if (need_vertical) {
- unpacked_output = (is_rgba) ? output[i] : buffer_vert;
- ImagingResampleVertical(
- unpacked_output,
- unpacked_input,
- ksize_vert,
- vert_indices_weights,
- vert_weights_precision);
- }
- TORCH_INTERNAL_ASSERT(unpacked_output.defined());
- if (!is_rgba) {
- pack_rgb(unpacked_output, output[i]);
- }
- }
- }
- // https://gist.github.com/NicolasHug/47c97d731f05eaad5694c173849b86f5
- void ImagingResampleHorizontalConvolution8u4x(
- uint32_t* C10_RESTRICT lineOut0,
- uint32_t* C10_RESTRICT lineOut1,
- uint32_t* C10_RESTRICT lineOut2,
- uint32_t* C10_RESTRICT lineOut3,
- const uint32_t* C10_RESTRICT lineIn0,
- const uint32_t* C10_RESTRICT lineIn1,
- const uint32_t* C10_RESTRICT lineIn2,
- const uint32_t* C10_RESTRICT lineIn3,
- int xsize,
- int* xbounds,
- int16_t* kk,
- int kmax,
- int coefs_precision) {
- int xmin, xmax, x;
- int16_t* k;
- for (const auto xx : c10::irange(xsize)) {
- xmin = xbounds[xx * 2 + 0];
- xmax = xbounds[xx * 2 + 1];
- k = &kk[xx * kmax];
- x = 0;
- __m256i sss0, sss1;
- __m256i zero = _mm256_setzero_si256();
- __m256i initial = _mm256_set1_epi32(1 << (coefs_precision - 1));
- sss0 = initial;
- sss1 = initial;
- for (; x < xmax - 3; x += 4) {
- __m256i pix, mmk0, mmk1, source;
- mmk0 = _mm256_set1_epi32(*(int32_t*)&k[x]);
- mmk1 = _mm256_set1_epi32(*(int32_t*)&k[x + 2]);
- source = _mm256_inserti128_si256(
- _mm256_castsi128_si256(_mm_loadu_si128((__m128i*)&lineIn0[x + xmin])),
- _mm_loadu_si128((__m128i*)&lineIn1[x + xmin]),
- 1);
- // clang-format off
- pix = _mm256_shuffle_epi8(source, _mm256_set_epi8(
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0,
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0));
- sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix, mmk0));
- pix = _mm256_shuffle_epi8(source, _mm256_set_epi8(
- -1,15, -1,11, -1,14, -1,10, -1,13, -1,9, -1,12, -1,8,
- -1,15, -1,11, -1,14, -1,10, -1,13, -1,9, -1,12, -1,8));
- sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix, mmk1));
- source = _mm256_inserti128_si256(
- _mm256_castsi128_si256(_mm_loadu_si128((__m128i*)&lineIn2[x + xmin])),
- _mm_loadu_si128((__m128i*)&lineIn3[x + xmin]),
- 1);
- pix = _mm256_shuffle_epi8(source, _mm256_set_epi8(
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0,
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0));
- sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix, mmk0));
- pix = _mm256_shuffle_epi8(source, _mm256_set_epi8(
- -1,15, -1,11, -1,14, -1,10, -1,13, -1,9, -1,12, -1,8,
- -1,15, -1,11, -1,14, -1,10, -1,13, -1,9, -1,12, -1,8));
- sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix, mmk1));
- }
- for (; x < xmax - 1; x += 2) {
- __m256i pix, mmk;
- mmk = _mm256_set1_epi32(*(int32_t*)&k[x]);
- pix = _mm256_inserti128_si256(
- _mm256_castsi128_si256(_mm_loadl_epi64((__m128i*)&lineIn0[x + xmin])),
- _mm_loadl_epi64((__m128i*)&lineIn1[x + xmin]),
- 1);
- pix = _mm256_shuffle_epi8(pix, _mm256_set_epi8(
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0,
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0));
- sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix, mmk));
- pix = _mm256_inserti128_si256(
- _mm256_castsi128_si256(_mm_loadl_epi64((__m128i*)&lineIn2[x + xmin])),
- _mm_loadl_epi64((__m128i*)&lineIn3[x + xmin]),
- 1);
- pix = _mm256_shuffle_epi8(pix, _mm256_set_epi8(
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0,
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0));
- sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix, mmk));
- // clang-format on
- }
- for (; x < xmax; x++) {
- __m256i pix, mmk;
- // [16] xx k0 xx k0 xx k0 xx k0 xx k0 xx k0 xx k0 xx k0
- mmk = _mm256_set1_epi32(k[x]);
- // [16] xx a0 xx b0 xx g0 xx r0 xx a0 xx b0 xx g0 xx r0
- pix = _mm256_inserti128_si256(
- _mm256_castsi128_si256(mm_cvtepu8_epi32(&lineIn0[x + xmin])),
- mm_cvtepu8_epi32(&lineIn1[x + xmin]),
- 1);
- sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix, mmk));
- pix = _mm256_inserti128_si256(
- _mm256_castsi128_si256(mm_cvtepu8_epi32(&lineIn2[x + xmin])),
- mm_cvtepu8_epi32(&lineIn3[x + xmin]),
- 1);
- sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix, mmk));
- }
- sss0 = _mm256_srai_epi32(sss0, coefs_precision);
- sss1 = _mm256_srai_epi32(sss1, coefs_precision);
- sss0 = _mm256_packs_epi32(sss0, zero);
- sss1 = _mm256_packs_epi32(sss1, zero);
- sss0 = _mm256_packus_epi16(sss0, zero);
- sss1 = _mm256_packus_epi16(sss1, zero);
- lineOut0[xx] = _mm_cvtsi128_si32(_mm256_extracti128_si256(sss0, 0));
- lineOut1[xx] = _mm_cvtsi128_si32(_mm256_extracti128_si256(sss0, 1));
- lineOut2[xx] = _mm_cvtsi128_si32(_mm256_extracti128_si256(sss1, 0));
- lineOut3[xx] = _mm_cvtsi128_si32(_mm256_extracti128_si256(sss1, 1));
- }
- }
- // https://gist.github.com/NicolasHug/47c97d731f05eaad5694c173849b86f5
- void ImagingResampleHorizontalConvolution8u(
- uint32_t* C10_RESTRICT lineOut,
- const uint32_t* C10_RESTRICT lineIn,
- int xsize,
- int* xbounds,
- int16_t* kk,
- int kmax,
- int coefs_precision) {
- int xmin, xmax, x;
- int16_t* k;
- for (const auto xx : c10::irange(xsize)) {
- __m128i sss;
- xmin = xbounds[xx * 2 + 0];
- xmax = xbounds[xx * 2 + 1];
- k = &kk[xx * kmax];
- x = 0;
- if (xmax < 8) {
- sss = _mm_set1_epi32(1 << (coefs_precision - 1));
- } else {
- // Lower part will be added to higher, use only half of the error
- __m256i sss256 = _mm256_set1_epi32(1 << (coefs_precision - 2));
- for (; x < xmax - 7; x += 8) {
- __m256i pix, mmk, source;
- __m128i tmp = _mm_loadu_si128((__m128i*)&k[x]);
- __m256i ksource =
- _mm256_insertf128_si256(_mm256_castsi128_si256(tmp), tmp, 1);
- // clang-format off
- source = _mm256_loadu_si256((__m256i*)&lineIn[x + xmin]);
- pix = _mm256_shuffle_epi8(source, _mm256_set_epi8(
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0,
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0));
- mmk = _mm256_shuffle_epi8(ksource, _mm256_set_epi8(
- 11,10, 9,8, 11,10, 9,8, 11,10, 9,8, 11,10, 9,8,
- 3,2, 1,0, 3,2, 1,0, 3,2, 1,0, 3,2, 1,0));
- sss256 = _mm256_add_epi32(sss256, _mm256_madd_epi16(pix, mmk));
- pix = _mm256_shuffle_epi8(source, _mm256_set_epi8(
- -1,15, -1,11, -1,14, -1,10, -1,13, -1,9, -1,12, -1,8,
- -1,15, -1,11, -1,14, -1,10, -1,13, -1,9, -1,12, -1,8));
- mmk = _mm256_shuffle_epi8(ksource, _mm256_set_epi8(
- 15,14, 13,12, 15,14, 13,12, 15,14, 13,12, 15,14, 13,12,
- 7,6, 5,4, 7,6, 5,4, 7,6, 5,4, 7,6, 5,4));
- sss256 = _mm256_add_epi32(sss256, _mm256_madd_epi16(pix, mmk));
- // clang-format on
- }
- for (; x < xmax - 3; x += 4) {
- __m256i pix, mmk, source;
- __m128i tmp = _mm_loadl_epi64((__m128i*)&k[x]);
- __m256i ksource =
- _mm256_insertf128_si256(_mm256_castsi128_si256(tmp), tmp, 1);
- tmp = _mm_loadu_si128((__m128i*)&lineIn[x + xmin]);
- source = _mm256_insertf128_si256(_mm256_castsi128_si256(tmp), tmp, 1);
- // clang-format off
- pix = _mm256_shuffle_epi8(source, _mm256_set_epi8(
- -1,15, -1,11, -1,14, -1,10, -1,13, -1,9, -1,12, -1,8,
- -1,7, -1,3, -1,6, -1,2, -1,5, -1,1, -1,4, -1,0));
- mmk = _mm256_shuffle_epi8(ksource, _mm256_set_epi8(
- 7,6, 5,4, 7,6, 5,4, 7,6, 5,4, 7,6, 5,4,
- 3,2, 1,0, 3,2, 1,0, 3,2, 1,0, 3,2, 1,0));
- sss256 = _mm256_add_epi32(sss256, _mm256_madd_epi16(pix, mmk));
- // clang-format on
- }
- sss = _mm_add_epi32(
- _mm256_extracti128_si256(sss256, 0),
- _mm256_extracti128_si256(sss256, 1));
- }
- for (; x < xmax - 1; x += 2) {
- __m128i mmk = _mm_set1_epi32(*(int32_t*)&k[x]);
- __m128i source = _mm_loadl_epi64((__m128i*)&lineIn[x + xmin]);
- __m128i pix = _mm_shuffle_epi8(
- source,
- _mm_set_epi8(-1, 7, -1, 3, -1, 6, -1, 2, -1, 5, -1, 1, -1, 4, -1, 0));
- sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
- }
- for (; x < xmax; x++) {
- __m128i pix = mm_cvtepu8_epi32(&lineIn[x + xmin]);
- __m128i mmk = _mm_set1_epi32(k[x]);
- sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
- }
- sss = _mm_srai_epi32(sss, coefs_precision);
- sss = _mm_packs_epi32(sss, sss);
- lineOut[xx] = _mm_cvtsi128_si32(_mm_packus_epi16(sss, sss));
- }
- }
- // https://gist.github.com/NicolasHug/47c97d731f05eaad5694c173849b86f5
- void ImagingResampleVerticalConvolution8u(
- uint32_t* C10_RESTRICT lineOut,
- const uint32_t* C10_RESTRICT imIn,
- int xmin,
- int xmax,
- int16_t* k,
- int coefs_precision,
- int xin) {
- int x;
- int xx = 0;
- int xsize = xin;
- __m128i initial = _mm_set1_epi32(1 << (coefs_precision - 1));
- __m256i initial_256 = _mm256_set1_epi32(1 << (coefs_precision - 1));
- for (; xx < xsize - 7; xx += 8) {
- __m256i sss0 = initial_256;
- __m256i sss1 = initial_256;
- __m256i sss2 = initial_256;
- __m256i sss3 = initial_256;
- x = 0;
- for (; x < xmax - 1; x += 2) {
- __m256i source, source1, source2;
- __m256i pix, mmk;
- // Load two coefficients at once
- mmk = _mm256_set1_epi32(*(int32_t*)&k[x]);
- // Load 2 lines
- // (__m256i *) &imIn->image32[x + xmin][xx]
- source1 = _mm256_loadu_si256((__m256i*)(imIn + (x + xmin) * xin + xx));
- // (__m256i *) &imIn->image32[x + 1 + xmin][xx]
- source2 =
- _mm256_loadu_si256((__m256i*)(imIn + (x + 1 + xmin) * xin + xx));
- source = _mm256_unpacklo_epi8(source1, source2);
- pix = _mm256_unpacklo_epi8(source, _mm256_setzero_si256());
- sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix, mmk));
- pix = _mm256_unpackhi_epi8(source, _mm256_setzero_si256());
- sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix, mmk));
- source = _mm256_unpackhi_epi8(source1, source2);
- pix = _mm256_unpacklo_epi8(source, _mm256_setzero_si256());
- sss2 = _mm256_add_epi32(sss2, _mm256_madd_epi16(pix, mmk));
- pix = _mm256_unpackhi_epi8(source, _mm256_setzero_si256());
- sss3 = _mm256_add_epi32(sss3, _mm256_madd_epi16(pix, mmk));
- }
- for (; x < xmax; x += 1) {
- __m256i source, source1, pix, mmk;
- mmk = _mm256_set1_epi32(k[x]);
- // (__m256i *) &imIn->image32[x + xmin][xx])
- source1 = _mm256_loadu_si256((__m256i*)(imIn + (x + xmin) * xin + xx));
- source = _mm256_unpacklo_epi8(source1, _mm256_setzero_si256());
- pix = _mm256_unpacklo_epi8(source, _mm256_setzero_si256());
- sss0 = _mm256_add_epi32(sss0, _mm256_madd_epi16(pix, mmk));
- pix = _mm256_unpackhi_epi8(source, _mm256_setzero_si256());
- sss1 = _mm256_add_epi32(sss1, _mm256_madd_epi16(pix, mmk));
- source = _mm256_unpackhi_epi8(source1, _mm256_setzero_si256());
- pix = _mm256_unpacklo_epi8(source, _mm256_setzero_si256());
- sss2 = _mm256_add_epi32(sss2, _mm256_madd_epi16(pix, mmk));
- pix = _mm256_unpackhi_epi8(source, _mm256_setzero_si256());
- sss3 = _mm256_add_epi32(sss3, _mm256_madd_epi16(pix, mmk));
- }
- sss0 = _mm256_srai_epi32(sss0, coefs_precision);
- sss1 = _mm256_srai_epi32(sss1, coefs_precision);
- sss2 = _mm256_srai_epi32(sss2, coefs_precision);
- sss3 = _mm256_srai_epi32(sss3, coefs_precision);
- sss0 = _mm256_packs_epi32(sss0, sss1);
- sss2 = _mm256_packs_epi32(sss2, sss3);
- sss0 = _mm256_packus_epi16(sss0, sss2);
- _mm256_storeu_si256((__m256i*)&lineOut[xx], sss0);
- }
- for (; xx < xsize - 1; xx += 2) {
- __m128i sss0 = initial; // left row
- __m128i sss1 = initial; // right row
- x = 0;
- for (; x < xmax - 1; x += 2) {
- __m128i source, source1, source2;
- __m128i pix, mmk;
- // Load two coefficients at once
- mmk = _mm_set1_epi32(*(int32_t*)&k[x]);
- // Load 2 lines
- // (__m128i *) &imIn->image32[x + xmin][xx])
- source1 = _mm_loadl_epi64((__m128i*)(imIn + (x + xmin) * xin + xx));
- // (__m128i *) &imIn->image32[x + 1 + xmin][xx]
- source2 = _mm_loadl_epi64((__m128i*)(imIn + (x + 1 + xmin) * xin + xx));
- source = _mm_unpacklo_epi8(source1, source2);
- pix = _mm_unpacklo_epi8(source, _mm_setzero_si128());
- sss0 = _mm_add_epi32(sss0, _mm_madd_epi16(pix, mmk));
- pix = _mm_unpackhi_epi8(source, _mm_setzero_si128());
- sss1 = _mm_add_epi32(sss1, _mm_madd_epi16(pix, mmk));
- }
- for (; x < xmax; x += 1) {
- __m128i source, source1, pix, mmk;
- mmk = _mm_set1_epi32(k[x]);
- // (__m128i *) &imIn->image32[x + xmin][xx]);
- source1 = _mm_loadl_epi64((__m128i*)(imIn + (x + xmin) * xin + xx));
- source = _mm_unpacklo_epi8(source1, _mm_setzero_si128());
- pix = _mm_unpacklo_epi8(source, _mm_setzero_si128());
- sss0 = _mm_add_epi32(sss0, _mm_madd_epi16(pix, mmk));
- pix = _mm_unpackhi_epi8(source, _mm_setzero_si128());
- sss1 = _mm_add_epi32(sss1, _mm_madd_epi16(pix, mmk));
- }
- sss0 = _mm_srai_epi32(sss0, coefs_precision);
- sss1 = _mm_srai_epi32(sss1, coefs_precision);
- sss0 = _mm_packs_epi32(sss0, sss1);
- sss0 = _mm_packus_epi16(sss0, sss0);
- _mm_storel_epi64((__m128i*)&lineOut[xx], sss0);
- }
- for (; xx < xsize; xx++) {
- __m128i sss = initial;
- x = 0;
- for (; x < xmax - 1; x += 2) {
- __m128i source, source1, source2;
- __m128i pix, mmk;
- // Load two coefficients at once
- mmk = _mm_set1_epi32(*(int32_t*)&k[x]);
- // Load 2 lines
- // *(int *) &imIn->image32[x + xmin][xx]
- source1 = _mm_cvtsi32_si128(*(int*)(imIn + (x + xmin) * xin + xx));
- // *(int *) &imIn->image32[x + 1 + xmin][xx]
- source2 = _mm_cvtsi32_si128(*(int*)(imIn + (x + 1 + xmin) * xin + xx));
- source = _mm_unpacklo_epi8(source1, source2);
- pix = _mm_unpacklo_epi8(source, _mm_setzero_si128());
- sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
- }
- for (; x < xmax; x++) {
- // &imIn->image32[x + xmin][xx]
- __m128i pix = mm_cvtepu8_epi32(imIn + (x + xmin) * xin + xx);
- __m128i mmk = _mm_set1_epi32(k[x]);
- sss = _mm_add_epi32(sss, _mm_madd_epi16(pix, mmk));
- }
- sss = _mm_srai_epi32(sss, coefs_precision);
- sss = _mm_packs_epi32(sss, sss);
- lineOut[xx] = _mm_cvtsi128_si32(_mm_packus_epi16(sss, sss));
- }
- }
- } // anonymous namespace
- #endif // CPU_CAPABILITY_AVX2
|