123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 |
- #pragma once
- // This file provides two functions to help write elementwise kernels:
- //
- // cpu_kernel(TensorIterator iter, <lambda>)
- // cpu_kernel_vec(TensorIterator iter, <lambda>, <vec_lambda>)
- //
- // Both functions may generate vectorized code. The cpu_kernel implementation
- // relies on the compiler's auto-vectorization. The cpu_kernel_vec
- // implementation uses x86 SIMD intrinsics when available. These functions
- // are only intended to be used in the ATen/native/cpu subdirectory, since files
- // in other directories are not compiled with AVX/AVX2 enabled. See README.md
- // for more details.
- //
- // For example, to write a multiplication kernel for float:
- //
- // cpu_kernel(iter, [](float a, float b) { return a * b; });
- //
- // Or you may write:
- //
- // cpu_kernel_vec(iter,
- // [](float a, float b) { return a * b; },
- // [](Vectorized<float> a, Vectorized<float> b) { return a * b; });
- //
- // See BinaryOpsKernel.cpp for the complete implementation
- //
- //
- #include <stdint.h>
- #include <c10/util/C++17.h>
- #include <c10/util/Load.h>
- #include <c10/util/irange.h>
- #include <ATen/detail/FunctionTraits.h>
- #include <ATen/native/cpu/IsContiguous.h>
- #include <ATen/native/TensorIterator.h>
- #include <ATen/native/TensorIteratorDynamicCasting.h>
- #include <ATen/cpu/vec/vec.h>
- #include <utility>
- namespace at { namespace native { inline namespace CPU_CAPABILITY {
- using namespace vec;
- template <typename traits, std::size_t... INDEX>
- typename traits::ArgsTuple
- dereference_impl(char* C10_RESTRICT data[], const int64_t* strides, int64_t i,
- std::index_sequence<INDEX...>) {
- return std::make_tuple(
- c10::load<typename traits::template arg<INDEX>::type>(
- data[INDEX] + i * strides[INDEX])...);
- }
- template <typename traits>
- typename traits::ArgsTuple
- dereference(char* C10_RESTRICT data[], const int64_t* strides, int64_t i) {
- using Indices = std::make_index_sequence<traits::arity>;
- return dereference_impl<traits>(data, strides, i, Indices{});
- }
- template <typename traits, std::size_t... INDEX>
- typename traits::ArgsTuple
- dereference_vec_impl(char* C10_RESTRICT data[],
- const typename traits::result_type& opt_scalar,
- size_t S,
- int64_t i,
- std::index_sequence<INDEX...>) {
- using Vec = typename traits::result_type;
- using scalar_t = typename Vec::value_type;
- return std::make_tuple(
- S == INDEX + 1 ?
- opt_scalar :
- Vec::loadu(data[INDEX] + i * sizeof(scalar_t))...);
- }
- template <typename traits>
- typename traits::ArgsTuple
- dereference_vec(char* C10_RESTRICT data[], const typename traits::result_type& opt_scalar, size_t S, int64_t i) {
- using Indices = std::make_index_sequence<traits::arity>;
- return dereference_vec_impl<traits>(data, opt_scalar, S, i, Indices{});
- }
- template <typename func_t,
- typename std::enable_if<!std::is_void<typename function_traits<func_t>::result_type>::value>::type* = nullptr>
- static inline void
- execute_op(char* C10_RESTRICT data[], const int64_t* strides, int64_t i, int64_t n, func_t&& op) {
- using traits = function_traits<func_t>;
- using result_type = typename traits::result_type;
- for (; i < n; i++) {
- result_type* out_ptr = (result_type*)(data[0] + i * strides[0]);
- *out_ptr = c10::guts::apply(std::forward<func_t>(op), dereference<traits>(
- &data[1],
- &strides[1],
- i));
- }
- }
- template <typename func_t,
- typename std::enable_if<std::is_void<typename function_traits<func_t>::result_type>::value>::type* = nullptr>
- static inline void
- execute_op(char* C10_RESTRICT data[], const int64_t* strides, int64_t i, int64_t n, func_t&& op) {
- using traits = function_traits<func_t>;
- for (; i < n; i++) {
- c10::guts::apply(std::forward<func_t>(op), dereference<traits>(
- &data[0],
- &strides[0],
- i));
- }
- }
- // Basic loop operation (one output, N inputs). May be auto-vectorized
- // by the compiler. Supports inputs and outputs of different types.
- template <typename func_t>
- static inline void
- basic_loop(char* C10_RESTRICT data[], const int64_t* strides_, int64_t i, int64_t n, func_t&& op) {
- using traits = function_traits<func_t>;
- constexpr int ntensors = traits::arity + 1;
- // Copying strides to temporary array helps auto vectorization in older GCC
- // versions.
- int64_t strides[ntensors];
- for (const auto arg : c10::irange(ntensors)) {
- strides[arg] = strides_[arg];
- }
- execute_op(data, strides, i, n, std::forward<func_t>(op));
- }
- // the recursive variadic template for iterating over the returned tuple
- template<class T, size_t N>
- struct TupleOutput {
- static void handle(char *C10_RESTRICT data[], const int64_t *strides, int64_t i,
- const T &tuple) {
- TupleOutput<T, N - 1>::handle(data, strides, i, tuple);
- auto output = std::get<N - 1>(tuple);
- using output_type = decltype(output);
- output_type * out_ptr = (output_type *)(data[N - 1] + i * strides[N - 1]);
- *out_ptr = output;
- }
- };
- // Base case for the above recursive template
- template<class T>
- struct TupleOutput<T, 1> {
- static void handle(char *C10_RESTRICT data[], const int64_t *strides, int64_t i,
- const T &tuple) {
- auto output = std::get<0>(tuple);
- using output_type = decltype(output);
- output_type* out_ptr = (output_type *)(data[0] + i * strides[0]);
- *out_ptr = output;
- }
- };
- template<class... Args>
- void handle_tuple_outputs(char* C10_RESTRICT data[],
- const int64_t* strides,
- int64_t i,
- const std::tuple<Args...> &tuple) {
- TupleOutput<decltype(tuple), sizeof...(Args)>::handle(data, strides, i, tuple);
- }
- // Loop operation for `cpu_kernel_multiple_outputs`.
- // 1. Use `c10::guts::apply` to make dynamic method invocation
- // for the lambda passed in `cpu_kernel_multiple_outputs`.
- // 2. Iterate over the members of the returned tuple, set the corresponding
- // output tensor by the tuple member in `handle_tuple_outputs` function.
- template <typename func_t>
- static inline void
- multiple_outputs_loop(char* C10_RESTRICT data[], const int64_t* strides_, int64_t i, int64_t n, func_t&& op) {
- using traits = function_traits<func_t>;
- using result_type = typename traits::result_type;
- constexpr int num_outputs = std::tuple_size<result_type>::value;
- constexpr int ntensors = traits::arity + num_outputs;
- // Copying strides to temporary array helps auto vectorization in older GCC
- // versions.
- int64_t strides[ntensors];
- for (const auto arg : c10::irange(ntensors)) {
- strides[arg] = strides_[arg];
- }
- for (; i < n; i++) {
- auto output = c10::guts::apply(op, dereference<traits>(
- &data[num_outputs],
- &strides[num_outputs],
- i));
- handle_tuple_outputs(data, strides, i, output);
- }
- }
- // Explicitly vectorized loop implementation. All inputs and outputs must be
- // the same type and contiguous with one exception: a single input may be
- // a scalar (stride 0). It's position is indicated by the argument `S`. If `S`
- // is 0, then there are no scalar inputs.
- template <typename func_t, typename vec_func_t>
- static inline void
- vectorized_loop(char** C10_RESTRICT data_, int64_t n, int64_t S, func_t&& op, vec_func_t&& vop) {
- using traits = function_traits<vec_func_t>;
- using scalar_t = typename function_traits<func_t>::result_type;
- using Vec = Vectorized<scalar_t>;
- constexpr int ntensors = traits::arity + 1;
- char* C10_RESTRICT data[ntensors];
- for (const auto arg : c10::irange(ntensors)) {
- data[arg] = data_[arg];
- }
- Vec opt_scalar = Vec(S > 0 ? *(scalar_t*)data[S] : scalar_t(0));
- int64_t i = 0;
- for (; i <= n - 2 * Vec::size(); i += 2 * Vec::size()) {
- auto args1 = dereference_vec<traits>(&data[1], opt_scalar, S, i);
- auto args2 = dereference_vec<traits>(&data[1], opt_scalar, S, i + Vec::size());
- auto out1 = c10::guts::apply(std::forward<vec_func_t>(vop), std::move(args1));
- auto out2 = c10::guts::apply(std::forward<vec_func_t>(vop), std::move(args2));
- out1.store(data[0] + i * sizeof(scalar_t));
- out2.store(data[0] + (i + Vec::size()) * sizeof(scalar_t));
- }
- if (i < n) {
- int64_t strides[ntensors];
- for (const auto arg : c10::irange(ntensors)) {
- strides[arg] = (S > 0 && arg == S) ? 0 : sizeof(scalar_t);
- }
- basic_loop(data, strides, i, n, std::forward<func_t>(op));
- }
- }
- template <typename traits, typename cb_t>
- static inline void unroll_contiguous_scalar_checks(
- const int64_t* /*strides*/,
- std::index_sequence<>,
- cb_t&& cb) {
- cb(0);
- }
- template <typename traits, typename cb_t, size_t INDEX0, size_t ...INDEX>
- static inline void unroll_contiguous_scalar_checks(
- const int64_t* strides,
- std::index_sequence<INDEX0, INDEX...>,
- cb_t&& cb) {
- if (is_contiguous_scalar<traits, INDEX0 + 1>(strides)) {
- cb(INDEX0 + 1);
- } else {
- unroll_contiguous_scalar_checks<traits>(strides, std::index_sequence<INDEX...>{}, std::forward<cb_t>(cb));
- }
- }
- template <typename op_t, typename vop_t>
- struct VectorizedLoop2d {
- op_t op;
- vop_t vop;
- using traits = function_traits<op_t>;
- static constexpr int ntensors = traits::arity + 1;
- using data_t = std::array<char*, ntensors>;
- VectorizedLoop2d(const op_t &op, vop_t vop):
- op(op), vop(std::move(vop)) {}
- static void advance(data_t &data, const int64_t *outer_strides) {
- for (const auto arg : c10::irange(data.size())) {
- data[arg] += outer_strides[arg];
- }
- }
- void operator()(char** base, const int64_t *strides, int64_t size0, int64_t size1) {
- data_t data;
- std::copy_n(base, ntensors, data.data());
- const int64_t *outer_strides = &strides[ntensors];
- if (is_contiguous<traits>(strides)) {
- for (const auto i C10_UNUSED : c10::irange(size1)) {
- vectorized_loop(data.data(), size0, 0, op, vop);
- advance(data, outer_strides);
- }
- } else {
- using Indices = std::make_index_sequence<traits::arity>;
- unroll_contiguous_scalar_checks<traits>(strides, Indices{}, [&](size_t idx) {
- if (idx) {
- for (const auto i C10_UNUSED : c10::irange(size1)) {
- vectorized_loop(data.data(), size0, idx, op, vop);
- advance(data, outer_strides);
- }
- } else {
- for (const auto i C10_UNUSED : c10::irange(size1)) {
- basic_loop(data.data(), strides, 0, size0, op);
- advance(data, outer_strides);
- }
- }
- });
- }
- }
- };
- template <typename op_t, typename vop_t>
- VectorizedLoop2d<op_t, vop_t> make_vectorized_loop2d(
- const op_t &op, const vop_t &vop) {
- return VectorizedLoop2d<op_t, vop_t>(op, vop);
- }
- template <typename func_t>
- void cpu_kernel(TensorIteratorBase& iter, func_t&& op, int64_t grain_size = at::internal::GRAIN_SIZE) {
- using traits = function_traits<func_t>;
- // this could be extended to work with void return types
- TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
- TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
- // dynamic casting not currently supported on CPU
- TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
- iter.for_each([&](char** data, const int64_t* strides, int64_t n) {
- // basic loop can handle 1d slices with arbitrary strides, and 1d slices is all that
- // iter.for_each is ever sending to the loop lambda
- basic_loop(data, strides, 0, n, std::forward<func_t>(op));
- }, grain_size);
- iter.cast_outputs();
- }
- // This function helps write elementwise kernels that requires multiple outputs.
- // It follows the similar structure of cpu_kernel.
- // Instead of `basic_loop` function, a new `multiple_outputs_loop` function is
- // manipulated to handle multiple return values.
- // For now `needs_dynamic_casting` check is not added as the passed lambda (`func_t`)
- // of `multiple_outputs_loop` returns `std::tuple` instead of `scalar_t`.
- // The `gpu_kernel_multiple_outputs` is also implemented without this check,
- // We could extend `needs_dynamic_casting` to support both `std::tuple` and
- // `thrust::tuple` in the future.
- template <typename func_t>
- void cpu_kernel_multiple_outputs(TensorIteratorBase& iter, func_t&& op, int64_t grain_size = at::internal::GRAIN_SIZE) {
- using traits = function_traits<func_t>;
- TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
- iter.for_each([&](char** data, const int64_t* strides, int64_t n) {
- multiple_outputs_loop(data, strides, 0, n, std::forward<func_t>(op));
- }, grain_size);
- iter.cast_outputs();
- }
- template <bool check_dynamic_cast=true, typename func_t, typename vec_func_t>
- void cpu_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop, int64_t grain_size = at::internal::GRAIN_SIZE) {
- using traits = function_traits<func_t>;
- // this could be extended to work with void return types
- TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
- TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
- // dynamic casting not currently supported on CPU, but some kernels (like Fill)
- // explicitly dynamic_cast, so we give the opt-out of checking.
- c10::guts::if_constexpr<check_dynamic_cast>([&] {
- TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
- });
- iter.for_each(make_vectorized_loop2d(op, vop), grain_size);
- iter.cast_outputs();
- }
- template <typename func_t>
- void cpu_serial_kernel(TensorIteratorBase& iter, func_t&& op, const Range& range) {
- using traits = function_traits<func_t>;
- constexpr bool result_void = std::is_void<typename traits::result_type>::value;
- TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity &&
- ((result_void && iter.noutputs() == 0) || (!result_void && iter.noutputs() == 1)));
- // dynamic casting not currently supported on CPU
- TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
- iter.serial_for_each([&](char** data, const int64_t* strides, int64_t n) {
- basic_loop(data, strides, 0, n, std::forward<func_t>(op));
- }, range);
- iter.cast_outputs();
- }
- template <typename func_t>
- void cpu_serial_kernel(TensorIteratorBase& iter, func_t&& op) {
- cpu_serial_kernel(iter, op, {0, iter.numel()});
- }
- template <typename func_t, typename vec_func_t>
- void cpu_serial_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop, const Range& range) {
- using traits = function_traits<func_t>;
- // this could be extended to work with void return types
- TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
- TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
- // dynamic casting not currently supported on CPU
- TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
- iter.serial_for_each(make_vectorized_loop2d(op, vop), range);
- iter.cast_outputs();
- }
- template <typename func_t, typename vec_func_t>
- void cpu_serial_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop) {
- cpu_serial_kernel_vec(iter, op, vop, {0, iter.numel()});
- }
- }}} // namespace at::native::<anonymous>
|