123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467 |
- #pragma once
- #include <math.h>
- #include <ATen/OpMathType.h>
- #include <ATen/TensorUtils.h>
- #include <ATen/core/Tensor.h>
- #include <ATen/native/DispatchStub.h>
- /**
- * Note [compute_scales_value]
- * Note [area_pixel_compute_scale]
- * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- * Interpolate with scale_factor can have different behaviors
- * depending on the value of recompute_scale_factor:
- *
- * - With recompute_scale_factor = True (current default behavior):
- * the scale_factor, when provided by the user, are used to calculate
- * the output size. The input size and the computed output_size
- * are then used to infer new values for the scales which are
- * used in the interpolation. Because floating-point math is not exact,
- * this may be a different value from the user-supplied scales.
- *
- * - With recompute_scale_factor = False (which will be the default
- * behavior starting 1.5.0):
- * the behavior follows opencv logic, and the scales provided by
- * the user are the ones used in the interpolation calculations.
- *
- * If the scales are not provided or if they are provided but
- * recompute_scale_factor is set to True (default behavior), the scales
- * are computed from the input and the output size;
- *
- *
- * When the scales are inferred from the input and output sizes,
- * we view each pixel as an area, idx + 0.5 as its center index.
- * Here is an example formula in 1D case.
- * if align_corners: center of two corner pixel areas are preserved,
- * (0.5, 0.5) -> (0.5, 0.5),
- * (input_size - 0.5, 0.5) -> (output_size - 0.5)
- * scale = (input_size - 0.5 - 0.5) / (output_size - 0.5 - 0.5)
- * src_index + 0.5 - 0.5 = scale * (dst_index + 0.5 - 0.5)
- * if not align_corners: the whole range is scaled accordingly
- * scale = input_size / output_size
- * src_idx + 0.5 = scale * (dst_index + 0.5)
- */
- namespace at {
- namespace native {
- namespace upsample {
- TORCH_API c10::SmallVector<int64_t, 3> compute_output_size(
- c10::IntArrayRef input_size, // Full input tensor size.
- at::OptionalIntArrayRef output_size,
- c10::optional<c10::ArrayRef<double>> scale_factors);
- inline c10::optional<double> get_scale_value(c10::optional<c10::ArrayRef<double>> scales, int idx) {
- if (!scales) {
- return c10::nullopt;
- }
- return scales->at(idx);
- }
- } // namespace upsample
- using scale_t = c10::optional<double>;
- using upsampling_nearest1d = void(*)(const Tensor& output, const Tensor& input, scale_t scales_w);
- using _upsampling_nearest_exact1d = void(*)(const Tensor& output, const Tensor& input, scale_t scales_w);
- using upsampling_nearest2d = void(*)(const Tensor& output, const Tensor& input, scale_t scales_h, scale_t scales_w);
- using _upsampling_nearest_exact2d = void(*)(const Tensor& output, const Tensor& input, scale_t scales_h, scale_t scales_w);
- using upsampling_nearest3d = void(*)(const Tensor& output, const Tensor& input, scale_t scales_d, scale_t scales_h, scale_t scales_w);
- using _upsampling_nearest_exact3d = void(*)(const Tensor& output, const Tensor& input, scale_t scales_d, scale_t scales_h, scale_t scales_w);
- using upsampling_linear1d = void(*)(const Tensor& output, const Tensor& input, bool align_corners, scale_t scales_w);
- using upsampling_bilinear2d = void(*)(const Tensor& output, const Tensor& input, bool align_corners, scale_t scales_h, scale_t scales_w);
- using _upsampling_bilinear2d_aa = void(*)(const Tensor& output, const Tensor& input, bool align_corners, scale_t scales_h, scale_t scales_w);
- using upsampling_trilinear3d = void(*)(const Tensor& output, const Tensor& input, bool align_corners, scale_t scales_d, scale_t scales_h, scale_t scales_w);
- using upsampling_bicubic2d = void(*)(const Tensor& output, const Tensor& input, bool align_corners, scale_t scales_h, scale_t scales_w);
- using _upsampling_bicubic2d_aa = void(*)(const Tensor& output, const Tensor& input, bool align_corners, scale_t scales_h, scale_t scales_w);
- DECLARE_DISPATCH(upsampling_nearest1d, upsample_nearest1d_kernel);
- DECLARE_DISPATCH(_upsampling_nearest_exact1d, _upsample_nearest_exact1d_kernel);
- DECLARE_DISPATCH(upsampling_nearest2d, upsample_nearest2d_kernel);
- DECLARE_DISPATCH(_upsampling_nearest_exact2d, _upsample_nearest_exact2d_kernel);
- DECLARE_DISPATCH(upsampling_nearest3d, upsample_nearest3d_kernel);
- DECLARE_DISPATCH(_upsampling_nearest_exact3d, _upsample_nearest_exact3d_kernel);
- DECLARE_DISPATCH(upsampling_nearest1d, upsample_nearest1d_backward_kernel);
- DECLARE_DISPATCH(_upsampling_nearest_exact1d, _upsample_nearest_exact1d_backward_kernel);
- DECLARE_DISPATCH(upsampling_nearest2d, upsample_nearest2d_backward_kernel);
- DECLARE_DISPATCH(_upsampling_nearest_exact2d, _upsample_nearest_exact2d_backward_kernel);
- DECLARE_DISPATCH(upsampling_nearest3d, upsample_nearest3d_backward_kernel);
- DECLARE_DISPATCH(_upsampling_nearest_exact3d, _upsample_nearest_exact3d_backward_kernel);
- DECLARE_DISPATCH(upsampling_linear1d, upsample_linear1d_kernel);
- DECLARE_DISPATCH(upsampling_bilinear2d, upsample_bilinear2d_kernel);
- DECLARE_DISPATCH(_upsampling_bilinear2d_aa, _upsample_bilinear2d_aa_kernel);
- DECLARE_DISPATCH(upsampling_trilinear3d, upsample_trilinear3d_kernel);
- DECLARE_DISPATCH(upsampling_linear1d, upsample_linear1d_backward_kernel);
- DECLARE_DISPATCH(upsampling_bilinear2d, upsample_bilinear2d_backward_kernel);
- DECLARE_DISPATCH(_upsampling_bilinear2d_aa, _upsample_bilinear2d_aa_backward_kernel);
- DECLARE_DISPATCH(upsampling_trilinear3d, upsample_trilinear3d_backward_kernel);
- DECLARE_DISPATCH(upsampling_bicubic2d, upsample_bicubic2d_kernel);
- DECLARE_DISPATCH(_upsampling_bicubic2d_aa, _upsample_bicubic2d_aa_kernel);
- DECLARE_DISPATCH(_upsampling_bicubic2d_aa, _upsample_bicubic2d_aa_backward_kernel);
- static C10_UNUSED std::array<int64_t, 3> upsample_1d_common_check(IntArrayRef input_size, IntArrayRef output_size) {
- TORCH_CHECK(
- output_size.size() == 1,
- "It is expected output_size equals to 1, but got size ",
- output_size.size());
- TORCH_CHECK(
- input_size.size() == 3,
- "It is expected input_size equals to 3, but got size ",
- input_size.size());
- int64_t output_width = output_size[0];
- int64_t nbatch = input_size[0];
- int64_t channels = input_size[1];
- int64_t input_width = input_size[2];
- TORCH_CHECK(
- input_width > 0 && output_width > 0,
- "Input and output sizes should be greater than 0, but got input (W: ",
- input_width,
- ") and output (W: ",
- output_width,
- ")");
- return {nbatch, channels, output_width};
- }
- static C10_UNUSED std::array<int64_t, 4> upsample_2d_common_check(IntArrayRef input_size, IntArrayRef output_size) {
- TORCH_CHECK(
- output_size.size() == 2,
- "It is expected output_size equals to 2, but got size ",
- output_size.size());
- TORCH_CHECK(
- input_size.size() == 4,
- "It is expected input_size equals to 4, but got size ",
- input_size.size());
- int64_t output_height = output_size[0];
- int64_t output_width = output_size[1];
- int64_t nbatch = input_size[0];
- int64_t channels = input_size[1];
- int64_t input_height = input_size[2];
- int64_t input_width = input_size[3];
- TORCH_CHECK(
- input_height > 0 && input_width > 0 && output_height > 0 &&
- output_width > 0,
- "Input and output sizes should be greater than 0,"
- " but got input (H: ",
- input_height,
- ", W: ",
- input_width,
- ") output (H: ",
- output_height,
- ", W: ",
- output_width,
- ")");
- return {nbatch, channels, output_height, output_width};
- }
- static C10_UNUSED
- std::array<int64_t, 5> upsample_3d_common_check(IntArrayRef input_size, IntArrayRef output_size) {
- TORCH_CHECK(
- output_size.size() == 3,
- "It is expected output_size equals to 3, but got size ",
- output_size.size());
- TORCH_CHECK(
- input_size.size() == 5,
- "It is expected input_size equals to 5, but got size ",
- input_size.size());
- int64_t output_depth = output_size[0];
- int64_t output_height = output_size[1];
- int64_t output_width = output_size[2];
- int64_t nbatch = input_size[0];
- int64_t channels = input_size[1];
- int64_t input_depth = input_size[2];
- int64_t input_height = input_size[3];
- int64_t input_width = input_size[4];
- TORCH_CHECK(
- input_depth > 0 && input_height > 0 && input_width > 0 &&
- output_depth > 0 && output_height > 0 && output_width > 0,
- "Input and output sizes should be greater than 0, but got input (D: ",
- input_depth,
- ", H: ",
- input_height,
- ", W: ",
- input_width,
- ") output (D: ",
- output_depth,
- ", H: ",
- output_height,
- ", W: ",
- output_width,
- ")");
- return {nbatch, channels, output_depth, output_height, output_width};
- }
- static inline void upsample_2d_shape_check(
- const Tensor& input,
- const Tensor& grad_output,
- int64_t nbatch,
- int64_t nchannels,
- int64_t input_height,
- int64_t input_width,
- int64_t output_height,
- int64_t output_width) {
- TORCH_CHECK(
- input_height > 0 && input_width > 0 && output_height > 0 &&
- output_width > 0,
- "Input and output sizes should be greater than 0,"
- " but got input (H: ",
- input_height,
- ", W: ",
- input_width,
- ") output (H: ",
- output_height,
- ", W: ",
- output_width,
- ")");
- if (input.defined()) {
- // Allow for empty batch size but not other dimensions
- TORCH_CHECK(
- (input.numel() != 0 ||
- (input.size(1) != 0 && input.size(2) != 0 && input.size(3) != 0)
- ) &&
- input.dim() == 4,
- "Non-empty 4D data tensor expected but got a tensor with sizes ",
- input.sizes());
- } else if (grad_output.defined()) {
- check_dim_size(grad_output, 4, 0, nbatch);
- check_dim_size(grad_output, 4, 1, nchannels);
- check_dim_size(grad_output, 4, 2, output_height);
- check_dim_size(grad_output, 4, 3, output_width);
- }
- }
- template <typename scalar_t>
- static inline scalar_t compute_scales_value(
- const c10::optional<double> scale,
- int64_t input_size,
- int64_t output_size) {
- // see Note [compute_scales_value]
- // FIXME: remove magic > 0 after we ensure no models were serialized with -1 defaults.
- return (scale.has_value() && scale.value() > 0.)
- ? static_cast<scalar_t>(1.0 / scale.value())
- : (static_cast<scalar_t>(input_size) / output_size);
- }
- template <typename scalar_t>
- static inline scalar_t area_pixel_compute_scale(
- int64_t input_size,
- int64_t output_size,
- bool align_corners,
- const c10::optional<double> scale) {
- // see Note [area_pixel_compute_scale]
- if(align_corners) {
- if(output_size > 1) {
- return static_cast<scalar_t>(input_size - 1) / (output_size - 1);
- } else {
- return static_cast<scalar_t>(0);
- }
- } else {
- return compute_scales_value<scalar_t>(scale, input_size, output_size);
- }
- }
- template <typename scalar_t>
- static inline scalar_t area_pixel_compute_source_index(
- scalar_t scale,
- int64_t dst_index,
- bool align_corners,
- bool cubic) {
- if (align_corners) {
- return scale * dst_index;
- } else {
- scalar_t src_idx = scale * (dst_index + static_cast<scalar_t>(0.5)) -
- static_cast<scalar_t>(0.5);
- // [Note] Follow Opencv resize logic:
- // We allow negative src_idx here and later will use
- // dx = src_idx - floorf(src_idx)
- // to compute the "distance"(which affects weights).
- // For linear modes, weight distribution doesn't matter
- // for negative indices as they use 2 pixels to interpolate.
- // For example, [-1, 0], they both use pixel 0 value so it
- // doesn't affect if we bound the src_idx to 0 or not.
- // TODO: Our current linear mode impls use unbound indices
- // where we should and then remove this cubic flag.
- // This matters in cubic mode, as we might need [-1, 0, 1, 2]
- // to interpolate and the weights can be affected.
- return (!cubic && src_idx < static_cast<scalar_t>(0)) ? scalar_t(0)
- : src_idx;
- }
- }
- static inline int64_t nearest_neighbor_compute_source_index(
- const float scale,
- int64_t dst_index,
- int64_t input_size) {
- // Index computation matching OpenCV INTER_NEAREST
- // which is buggy and kept for BC
- const int64_t src_index =
- std::min(static_cast<int64_t>(floorf(dst_index * scale)), input_size - 1);
- return src_index;
- }
- static inline int64_t nearest_neighbor_exact_compute_source_index(
- const float scale,
- int64_t dst_index,
- int64_t input_size) {
- // index_f32 = (output_index + 0.5) * scale - 0.5
- // input_index = round(index_f32)
- // Same as Pillow and Scikit-Image/Scipy ndi.zoom
- const int64_t src_index =
- std::min(static_cast<int64_t>(floorf((dst_index + 0.5) * scale)), input_size - 1);
- return src_index;
- }
- static inline int64_t nearest_idx(
- int64_t output_index,
- int64_t input_size,
- int64_t output_size,
- c10::optional<double> scales) {
- // This method specificly treats cases: output_size == input_size or
- // output_size == 2 * input_size, that we would like to get rid of
- // We keep this method for BC and consider as deprecated.
- // See nearest_exact_idx as replacement
- if (output_size == input_size) {
- // scale_factor = 1, simply copy
- return output_index;
- } else if (output_size == 2 * input_size) {
- // scale_factor = 2, shift input index
- return output_index >> 1;
- } else {
- float scale = compute_scales_value<float>(scales, input_size, output_size);
- return nearest_neighbor_compute_source_index(scale, output_index, input_size);
- }
- }
- static inline int64_t nearest_exact_idx(
- int64_t output_index,
- int64_t input_size,
- int64_t output_size,
- c10::optional<double> scales) {
- float scale = compute_scales_value<float>(scales, input_size, output_size);
- return nearest_neighbor_exact_compute_source_index(scale, output_index, input_size);
- }
- // Define a typedef to dispatch to nearest_idx or nearest_exact_idx
- typedef int64_t (*nearest_idx_fn_t)(int64_t, int64_t, int64_t, c10::optional<double>);
- template <typename scalar_t>
- static scalar_t upsample_get_value_bounded(
- scalar_t* data,
- int64_t width,
- int64_t height,
- int64_t x,
- int64_t y) {
- int64_t access_x = std::max(std::min(x, width - 1), static_cast<int64_t>(0));
- int64_t access_y = std::max(std::min(y, height - 1), static_cast<int64_t>(0));
- return data[access_y * width + access_x];
- }
- template <typename scalar_t>
- static void upsample_increment_value_bounded(
- scalar_t* data,
- int64_t width,
- int64_t height,
- int64_t x,
- int64_t y,
- scalar_t value) {
- int64_t access_x = std::max(std::min(x, width - 1), static_cast<int64_t>(0));
- int64_t access_y = std::max(std::min(y, height - 1), static_cast<int64_t>(0));
- data[access_y * width + access_x] += value;
- }
- // Based on
- // https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
- template <typename scalar_t>
- static inline scalar_t cubic_convolution1(scalar_t x, scalar_t A) {
- return ((A + 2) * x - (A + 3)) * x * x + 1;
- }
- template <typename scalar_t>
- static inline scalar_t cubic_convolution2(scalar_t x, scalar_t A) {
- return ((A * x - 5 * A) * x + 8 * A) * x - 4 * A;
- }
- template <typename scalar_t>
- static inline void get_cubic_upsample_coefficients(
- scalar_t coeffs[4],
- scalar_t t) {
- scalar_t A = -0.75;
- scalar_t x1 = t;
- coeffs[0] = cubic_convolution2<scalar_t>(x1 + 1.0, A);
- coeffs[1] = cubic_convolution1<scalar_t>(x1, A);
- // opposite coefficients
- scalar_t x2 = 1.0 - t;
- coeffs[2] = cubic_convolution1<scalar_t>(x2, A);
- coeffs[3] = cubic_convolution2<scalar_t>(x2 + 1.0, A);
- }
- template <typename scalar_t>
- static inline scalar_t cubic_interp1d(
- scalar_t x0,
- scalar_t x1,
- scalar_t x2,
- scalar_t x3,
- scalar_t t) {
- scalar_t coeffs[4];
- get_cubic_upsample_coefficients<scalar_t>(coeffs, t);
- return x0 * coeffs[0] + x1 * coeffs[1] + x2 * coeffs[2] + x3 * coeffs[3];
- }
- template<typename scalar_t>
- static inline void compute_source_index_and_lambda(
- int64_t& input_index0,
- int64_t& input_index1,
- scalar_t& lambda0,
- scalar_t& lambda1,
- scalar_t ratio,
- int64_t output_index,
- int64_t input_size,
- int64_t output_size,
- bool align_corners) {
- if (output_size == input_size) {
- // scale_factor = 1, simply copy
- input_index0 = output_index;
- input_index1 = output_index;
- lambda0 = static_cast<scalar_t>(1);
- lambda1 = static_cast<scalar_t>(0);
- } else {
- using opmath_t = at::opmath_type<scalar_t>;
- const auto real_input_index =
- area_pixel_compute_source_index<opmath_t>(
- ratio, output_index, align_corners, /*cubic=*/false);
- // when `real_input_index` becomes larger than the range the floating point
- // type can accurately represent, the type casting to `int64_t` might exceed
- // `input_size - 1`, causing overflow. So we guard it with `std::min` below.
- input_index0 = std::min(static_cast<int64_t>(real_input_index), input_size - 1);
- int64_t offset = (input_index0 < input_size - 1) ? 1 : 0;
- input_index1 = input_index0 + offset;
- lambda1 = std::min(
- std::max(real_input_index - input_index0, static_cast<opmath_t>(0)),
- static_cast<opmath_t>(1)
- );
- lambda0 = static_cast<scalar_t>(1.) - lambda1;
- }
- }
- } // namespace native
- } // namespace at
|