1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- #include <ATen/core/Tensor.h>
- #include <ATen/native/LinearAlgebraUtils.h>
- namespace at {
- namespace native {
- /*
- * Given batches of matrices with arbitrary batch dim,
- * computes the number of batches for Triu and Tril. This ignores stride 0 dimension
- */
- static inline int64_t batchCountTrilTriu(const Tensor& batched_matrices) {
- int64_t result = 1;
- for (int64_t i = 0; i < batched_matrices.ndimension() - 2; i++) {
- if (batched_matrices.stride(i) != 0) {
- result *= batched_matrices.size(i);
- }
- }
- return result;
- }
- /* Checks a necessary property for the triu and tril implementations, hence the name.
- * Here batch contiguity is checked for tensors with greater than 4 dimensions.
- * Contiguous tensors and tensors with less than 3 dimensions pass this check
- */
- static inline std::tuple<bool, Tensor> checkTrilTriuBatchContiguous(const Tensor& tensor, bool allow_zero_stride) {
- // Complete contiguity is the most desired property, which is why
- // we return true if the tensor is contiguous
- if (tensor.is_contiguous()) {
- auto default_strides_for_size = batched_matrix_contiguous_strides(tensor.sizes());
- if (tensor.strides() == default_strides_for_size) {
- return std::make_tuple(true, tensor);
- } else {
- return std::make_tuple(false, tensor.as_strided(tensor.sizes(), default_strides_for_size));
- }
- }
- int64_t dims = tensor.dim();
- // Tensors with dimension less than 4 are handled by default
- if (allow_zero_stride && dims <= 3) {
- return std::make_tuple(true, tensor);
- }
- int64_t expected_stride = tensor.size(-1) * tensor.size(-2);
- for (int64_t i = dims - 3; i >= 0; i--) {
- // Skip trivial dimension;
- if (allow_zero_stride && i == 0 && (tensor.stride(i) == 0 || tensor.size(i) == 1)) {
- continue;
- }
- if (expected_stride != tensor.stride(i)) {
- return std::make_tuple(false, tensor.contiguous());
- }
- expected_stride *= tensor.size(i);
- }
- return std::make_tuple(true, tensor);
- }
- } // namespace native
- } // namespace at
|