1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- #pragma once
- #include <string>
- #include <stdexcept>
- #include <sstream>
- #include <ATen/native/DispatchStub.h>
- namespace at { namespace native {
- // Normalization types used in _fft_with_size
- enum class fft_norm_mode {
- none, // No normalization
- by_root_n, // Divide by sqrt(signal_size)
- by_n, // Divide by signal_size
- };
- // NOTE [ Fourier Transform Conjugate Symmetry ]
- //
- // Real-to-complex Fourier transform satisfies the conjugate symmetry. That is,
- // assuming X is the transformed K-dimensionsal signal, we have
- //
- // X[i_1, ..., i_K] = X[j_i, ..., j_K]*,
- //
- // where j_k = (N_k - i_k) mod N_k, N_k being the signal size at dim k,
- // * is the conjugate operator.
- //
- // Therefore, in such cases, FFT libraries return only roughly half of the
- // values to avoid redundancy:
- //
- // X[:, :, ..., :floor(N / 2) + 1]
- //
- // This is also the assumption in cuFFT and MKL. In ATen SpectralOps, such
- // halved signal will also be returned by default (flag onesided=True).
- // The following infer_ft_real_to_complex_onesided_size function calculates the
- // onesided size from the twosided size.
- //
- // Note that this loses some information about the size of signal at last
- // dimension. E.g., both 11 and 10 maps to 6. Hence, the following
- // infer_ft_complex_to_real_onesided_size function takes in optional parameter
- // to infer the twosided size from given onesided size.
- //
- // cuFFT doc: http://docs.nvidia.com/cuda/cufft/index.html#multi-dimensional
- // MKL doc: https://software.intel.com/en-us/mkl-developer-reference-c-dfti-complex-storage-dfti-real-storage-dfti-conjugate-even-storage#CONJUGATE_EVEN_STORAGE
- inline int64_t infer_ft_real_to_complex_onesided_size(int64_t real_size) {
- return (real_size / 2) + 1;
- }
- inline int64_t infer_ft_complex_to_real_onesided_size(int64_t complex_size,
- int64_t expected_size=-1) {
- int64_t base = (complex_size - 1) * 2;
- if (expected_size < 0) {
- return base + 1;
- } else if (base == expected_size) {
- return base;
- } else if (base + 1 == expected_size) {
- return base + 1;
- } else {
- std::ostringstream ss;
- ss << "expected real signal size " << expected_size << " is incompatible "
- << "with onesided complex frequency size " << complex_size;
- AT_ERROR(ss.str());
- }
- }
- using fft_fill_with_conjugate_symmetry_fn =
- void (*)(ScalarType dtype, IntArrayRef mirror_dims, IntArrayRef half_sizes,
- IntArrayRef in_strides, const void* in_data,
- IntArrayRef out_strides, void* out_data);
- DECLARE_DISPATCH(fft_fill_with_conjugate_symmetry_fn, fft_fill_with_conjugate_symmetry_stub);
- // In real-to-complex transform, cuFFT and MKL only fill half of the values
- // due to conjugate symmetry. This function fills in the other half of the full
- // fft by using the Hermitian symmetry in the signal.
- // self should be the shape of the full signal and dims.back() should be the
- // one-sided dimension.
- // See NOTE [ Fourier Transform Conjugate Symmetry ]
- TORCH_API void _fft_fill_with_conjugate_symmetry_(const Tensor& self, IntArrayRef dims);
- }} // at::native
|