1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889 |
- #pragma once
- #include <ATen/AccumulateType.h>
- #include <ATen/NumericUtils.h>
- #include <ATen/jiterator_macros.h>
- #include <c10/util/BFloat16.h>
- #include <c10/util/Half.h>
- #include <c10/util/MathConstants.h>
- #include <c10/util/math_compat.h>
- #include <cfloat>
- #include <cmath>
- #include <cstdint>
- #include <cstdlib>
- #include <limits>
- #include <type_traits>
- C10_CLANG_DIAGNOSTIC_PUSH()
- #if C10_CLANG_HAS_WARNING("-Wimplicit-float-conversion")
- C10_CLANG_DIAGNOSTIC_IGNORE("-Wimplicit-float-conversion")
- #endif
- /* The next function is taken from https://github.com/antelopeusersgroup/antelope_contrib/blob/master/lib/location/libgenloc/erfinv.c.
- Below is the copyright.
- Output was modified to be inf or -inf when input is 1 or -1. */
- /*
- Copyright (c) 2014 Indiana University
- All rights reserved.
- Written by Prof. Gary L. Pavlis, Dept. of Geol. Sci.,
- Indiana University, Bloomington, IN
- This software is licensed under the New BSD license:
- Redistribution and use in source and binary forms,
- with or without modification, are permitted provided
- that the following conditions are met:
- Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
- Redistributions in binary form must reproduce the
- above copyright notice, this list of conditions and
- the following disclaimer in the documentation and/or
- other materials provided with the distribution.
- Neither the name of Indiana University nor
- the names of its contributors may be used to endorse
- or promote products derived from this software without
- specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
- CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
- WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
- THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
- DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
- USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
- IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- POSSIBILITY OF SUCH DAMAGE.
- */
- namespace {
- /*
- * This function is derived from the implementation of the i0e function in the
- * Cephes Math Library. See note [3-Clause BSD License for the Cephes Math
- * Library].
- *
- * Computes an approximation of the exponentially scaled zeroth order modified
- * Bessel function of the first kind. The approximation is actually two
- * (sub)approximations, both using a Chebyshev polynomial expansion. One
- * approximates the function over [0, 8], and the other over (8, infinity). This
- * function takes the absolute value of all inputs to convert them into the
- * domain of the approximation.
- */
- jiterator_also_stringify_as(jiterator_code(
- template <typename T>
- JITERATOR_HOST_DEVICE T chbevl(T x, const T array[], const int len) {
- T b0, b1, b2;
- b0 = array[0];
- b1 = 0;
- for (int i = 1; i < len; ++i) {
- b2 = b1;
- b1 = b0;
- b0 = x * b1 - b2 + array[i];
- }
- return T{0.5} * (b0 - b2);
- }
- template <typename T>
- JITERATOR_HOST_DEVICE T calc_i0e(T _x) {
- T x = std::fabs(_x);
- if (x <= T{8.0}) {
- static const T coefficients[] = {
- -4.41534164647933937950E-18, 3.33079451882223809783E-17,
- -2.43127984654795469359E-16, 1.71539128555513303061E-15,
- -1.16853328779934516808E-14, 7.67618549860493561688E-14,
- -4.85644678311192946090E-13, 2.95505266312963983461E-12,
- -1.72682629144155570723E-11, 9.67580903537323691224E-11,
- -5.18979560163526290666E-10, 2.65982372468238665035E-9,
- -1.30002500998624804212E-8, 6.04699502254191894932E-8,
- -2.67079385394061173391E-7, 1.11738753912010371815E-6,
- -4.41673835845875056359E-6, 1.64484480707288970893E-5,
- -5.75419501008210370398E-5, 1.88502885095841655729E-4,
- -5.76375574538582365885E-4, 1.63947561694133579842E-3,
- -4.32430999505057594430E-3, 1.05464603945949983183E-2,
- -2.37374148058994688156E-2, 4.93052842396707084878E-2,
- -9.49010970480476444210E-2, 1.71620901522208775349E-1,
- -3.04682672343198398683E-1, 6.76795274409476084995E-1};
- T y = (x / T{2.0}) - T{2.0};
- return chbevl(y, coefficients, int{30});
- }
- // x > 8
- static const T coefficients[] = {
- -7.23318048787475395456E-18, -4.83050448594418207126E-18,
- 4.46562142029675999901E-17, 3.46122286769746109310E-17,
- -2.82762398051658348494E-16, -3.42548561967721913462E-16,
- 1.77256013305652638360E-15, 3.81168066935262242075E-15,
- -9.55484669882830764870E-15, -4.15056934728722208663E-14,
- 1.54008621752140982691E-14, 3.85277838274214270114E-13,
- 7.18012445138366623367E-13, -1.79417853150680611778E-12,
- -1.32158118404477131188E-11, -3.14991652796324136454E-11,
- 1.18891471078464383424E-11, 4.94060238822496958910E-10,
- 3.39623202570838634515E-9, 2.26666899049817806459E-8,
- 2.04891858946906374183E-7, 2.89137052083475648297E-6,
- 6.88975834691682398426E-5, 3.36911647825569408990E-3,
- 8.04490411014108831608E-1};
- return chbevl(T{32.0} / x - T{2.0}, coefficients, int{25}) / std::sqrt(x);
- }),
- i0e_string); // i0e_string
- }
- #define CENTRAL_RANGE 0.7
- template <typename T>
- static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
- calc_erfinv(T y) {
- /* Function to calculate inverse error function. Rational approximation
- is used to generate an initial approximation, which is then improved to
- full accuracy by two steps of Newton's method. Code is a direct
- translation of the erfinv m file in matlab version 2.0.
- Author: Gary L. Pavlis, Indiana University
- Date: February 1996
- */
- T x, z, num, dem; /*working variables */
- /* coefficients in rational expansion */
- T a[4] = { T(0.886226899), T(-1.645349621), T(0.914624893), T(-0.140543331) };
- T b[4] = { T(-2.118377725), T(1.442710462), T(-0.329097515), T(0.012229801) };
- T c[4] = { T(-1.970840454), T(-1.624906493), T(3.429567803), T(1.641345311) };
- T d[2] = { T(3.543889200), T(1.637067800) };
- T y_abs = std::abs(y);
- if(y_abs > 1.0) return std::numeric_limits<T>::quiet_NaN();
- #ifdef _WIN32
- // error C2039: '_copysign': is not a member of 'std'
- if(y_abs == 1.0) return copysign(std::numeric_limits<T>::infinity(), y);
- #else
- if(y_abs == 1.0) return std::copysign(std::numeric_limits<T>::infinity(), y);
- #endif
- if(y_abs <= static_cast<T>(CENTRAL_RANGE)) {
- z = y * y;
- num = (((a[3]*z + a[2])*z + a[1])*z + a[0]);
- dem = ((((b[3]*z + b[2])*z + b[1])*z +b[0]) * z + static_cast<T>(1.0));
- x = y * num / dem;
- }
- else{
- z = std::sqrt(-std::log((static_cast<T>(1.0)-y_abs)/static_cast<T>(2.0)));
- num = ((c[3]*z + c[2])*z + c[1]) * z + c[0];
- dem = (d[1]*z + d[0])*z + static_cast<T>(1.0);
- #ifdef _WIN32
- // error C2039: '_copysign': is not a member of 'std'
- x = copysign(num, y) / dem;
- #else
- x = std::copysign(num, y) / dem;
- #endif
- }
- /* Two steps of Newton-Raphson correction */
- x = x - (std::erf(x) - y) / ((static_cast<T>(2.0)/static_cast<T>(std::sqrt(c10::pi<double>)))*std::exp(-x*x));
- x = x - (std::erf(x) - y) / ((static_cast<T>(2.0)/static_cast<T>(std::sqrt(c10::pi<double>)))*std::exp(-x*x));
- return(x);
- }
- #undef CENTRAL_RANGE
- /*
- * Note [3-Clause BSD License for the Cephes Math Library]
- * Code derived from implementations in the Cephes Math Library should mention its derivation and reference
- * this note (ex. 'This function is derived from the implementation of X in the Cephes Math Library. See note
- * [3-Clause BSD License for the Cephes Math Library]. The license is:
- * Copyright (c) 2018, Steven Moshier
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of the nor the
- * names of its contributors may be used to endorse or promote products
- * derived from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL Steven Moshier BE LIABLE FOR ANY
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- /*
- * This function is derived from the implementation of the zeta function in the Cephes Math Library.
- * See note [3-Clause BSD License for the Cephes Math Library].
- */
- template <typename scalar_t, bool is_cuda=false>
- C10_HOST_DEVICE static inline scalar_t zeta(scalar_t x, scalar_t q) __ubsan_ignore_float_divide_by_zero__ {
- using acc_t = at::acc_type<scalar_t, is_cuda>;
- const acc_t MACHEP = acc_t{1.11022302462515654042E-16};
- constexpr acc_t zero = acc_t{0.0};
- constexpr acc_t half = acc_t{0.5};
- constexpr acc_t one = acc_t{1.0};
- static const acc_t A[] = {
- 12.0,
- -720.0,
- 30240.0,
- -1209600.0,
- 47900160.0,
- -1.8924375803183791606e9, /*1.307674368e12/691*/
- 7.47242496e10,
- -2.950130727918164224e12, /*1.067062284288e16/3617*/
- 1.1646782814350067249e14, /*5.109094217170944e18/43867*/
- -4.5979787224074726105e15, /*8.028576626982912e20/174611*/
- 1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/
- -7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/
- };
- int i = 0;
- acc_t a, b, k, s, t, w;
- if (x == one) {
- return std::numeric_limits<scalar_t>::infinity();
- }
- if (x < one) {
- return std::numeric_limits<scalar_t>::quiet_NaN();
- }
- if (q <= zero) {
- if (q == std::floor(q)) {
- return std::numeric_limits<scalar_t>::infinity();
- }
- if (x != std::floor(x)) {
- return std::numeric_limits<scalar_t>::quiet_NaN();
- }
- }
- s = std::pow(q, -x);
- a = q;
- i = 0;
- b = zero;
- while ((i < 9) || (a <= acc_t{9.0})) {
- i += 1;
- a += one;
- b = ::pow(a, -x);
- s += b;
- if ((-MACHEP * s < b) && (b < MACHEP * s)) {
- return static_cast<scalar_t>(s);
- }
- };
- w = a;
- s += b * w / (x - one);
- s -= half * b;
- a = one;
- k = zero;
- for (int i = 0; i < 12; i++) {
- a *= x + k;
- b /= w;
- t = a * b / A[i];
- s = s + t;
- t = ::fabs(t / s);
- if (t < MACHEP) {
- return static_cast<scalar_t>(s);
- }
- k += one;
- a *= x + k;
- b /= w;
- k += one;
- }
- return static_cast<scalar_t>(s);
- }
- /*
- * This function is derived from the implementation of the digamma function in the Cephes Math Library.
- * See note [3-Clause BSD License for the Cephes Math Library].
- *
- * Evaluates polynomial of degree N:
- *
- * 2 N
- * y = C + C x + C x +...+ C x
- * 0 1 2 N
- *
- * Coefficients are stored in reverse order:
- *
- * coef[0] = C , ..., coef[N] = C .
- * N 0
- */
- template <typename T>
- C10_HOST_DEVICE static inline T polevl(const T x, const T A[], size_t len) {
- T result = 0;
- for (size_t i = 0; i <= len; i++) {
- result = result * x + A[i];
- }
- return result;
- }
- static inline double trigamma(double x) __ubsan_ignore_float_divide_by_zero__ {
- double sign = +1;
- double result = 0;
- if (x < 0.5) {
- sign = -1;
- const double sin_pi_x = sin(c10::pi<double> * x);
- result -= (c10::pi<double> * c10::pi<double>) / (sin_pi_x * sin_pi_x);
- x = 1 - x;
- }
- for (int i = 0; i < 6; ++i) {
- result += 1 / (x * x);
- x += 1;
- }
- const double ixx = 1 / (x*x);
- result += (1 + 1 / (2*x) + ixx * (1./6 - ixx * (1./30 - ixx * (1./42)))) / x;
- return sign * result;
- }
- static inline float trigamma(float x) __ubsan_ignore_float_divide_by_zero__ {
- float sign = +1;
- float result = 0;
- if (x < 0.5f) {
- sign = -1;
- const float sin_pi_x = sinf(c10::pi<float> * x);
- result -= (c10::pi<float> * c10::pi<float>) / (sin_pi_x * sin_pi_x);
- x = 1 - x;
- }
- for (int i = 0; i < 6; ++i) {
- result += 1 / (x * x);
- x += 1;
- }
- const float ixx = 1 / (x*x);
- result += (1 + 1 / (2*x) + ixx * (1.f/6 - ixx * (1.f/30 - ixx * (1.f/42)))) / x;
- return sign * result;
- }
- /*
- * This function is derived from the implementation of the digamma function in the Cephes Math Library.
- * See note [3-Clause BSD License for the Cephes Math Library].
- */
- static inline double calc_digamma(double x) {
- // [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma
- static double PSI_10 = 2.25175258906672110764;
- if (x == 0) {
- // As per C++ standard for gamma related functions and SciPy,
- // If the argument is ±0, ±∞ is returned
- return std::copysign(INFINITY, -x);
- }
- bool x_is_integer = x == trunc(x);
- if (x < 0) {
- if (x_is_integer) {
- // As per C++ standard for gamma related functions and SciPy,
- // If the argument is a negative integer, NaN is returned
- return std::numeric_limits<double>::quiet_NaN();
- }
- // Extracts the fractional part of x as r, since tan(pi * r) is more numerically
- // accurate than tan(pi * x). While these operations are mathematically equivalent
- // since both x and r are in radians and tan() has a periodicity of pi, in practice
- // the computation of pi * x is a source of error (when |x| > 1).
- double q, r;
- r = std::modf(x, &q);
- return calc_digamma(1 - x) - c10::pi<double> / tan(c10::pi<double> * r);
- }
- // Push x to be >= 10
- double result = 0;
- while (x < 10) {
- result -= 1 / x;
- x += 1;
- }
- if (x == 10) {
- return result + PSI_10;
- }
- // Compute asymptotic digamma
- static const double A[] = {
- 8.33333333333333333333E-2,
- -2.10927960927960927961E-2,
- 7.57575757575757575758E-3,
- -4.16666666666666666667E-3,
- 3.96825396825396825397E-3,
- -8.33333333333333333333E-3,
- 8.33333333333333333333E-2,
- };
- double y = 0;
- if (x < 1.0e17) {
- double z = 1.0 / (x * x);
- y = z * polevl(z, A, 6);
- }
- return result + log(x) - (0.5 / x) - y;
- }
- /*
- * This function is derived from the implementation of the digamma function in the Cephes Math Library.
- * See note [3-Clause BSD License for the Cephes Math Library].
- */
- static inline float calc_digamma(float x) {
- // See [C++ Standard Reference: Gamma Function]
- static float PSI_10 = 2.25175258906672110764f;
- if (x == 0) {
- // As per C++ standard for gamma related functions and SciPy,
- // If the argument is ±0, ±∞ is returned
- return std::copysign(INFINITY, -x);
- }
- bool x_is_integer = x == truncf(x);
- if (x < 0) {
- if (x_is_integer) {
- // As per C++ standard for gamma related functions and SciPy,
- // If the argument is a negative integer, NaN is returned
- return std::numeric_limits<float>::quiet_NaN();
- }
- // Extracts the fractional part of x as r, since tan(pi * r) is more numerically
- // accurate than tan(pi * x). While these operations are mathematically equivalent
- // since both x and r are in radians and tan() has a periodicity of pi, in practice
- // the computation of pi * x is a source of error (when |x| > 1).
- double q, r;
- r = std::modf(x, &q);
- float pi_over_tan_pi_x = (float)(c10::pi<double> / tan(c10::pi<double> * r));
- return calc_digamma(1 - x) - pi_over_tan_pi_x;
- }
- // Push x to be >= 10
- float result = 0;
- while (x < 10) {
- result -= 1 / x;
- x += 1;
- }
- if (x == 10) {
- return result + PSI_10;
- }
- // Compute asymptotic digamma
- static const float A[] = {
- 8.33333333333333333333E-2f,
- -2.10927960927960927961E-2f,
- 7.57575757575757575758E-3f,
- -4.16666666666666666667E-3f,
- 3.96825396825396825397E-3f,
- -8.33333333333333333333E-3f,
- 8.33333333333333333333E-2f,
- };
- float y = 0;
- if (x < 1.0e17f) {
- float z = 1 / (x * x);
- y = z * polevl(z, A, 6);
- }
- return result + logf(x) - (0.5f / x) - y;
- }
- template <typename scalar_t, bool is_cuda=false>
- static inline C10_HOST_DEVICE scalar_t calc_polygamma(scalar_t x, int n) {
- // already blocked if n <= 1
- const auto one = scalar_t{1};
- return ((n % 2) ? one : -one) *
- std::exp(std::lgamma(static_cast<scalar_t>(n) + one)) *
- zeta<scalar_t, is_cuda>(static_cast<scalar_t>(n + 1), x);
- }
- // regularized lower incomplete gamma
- // the regularized lower, upper incomplete gamma, as well as their
- // helper functions follow SciPy's implementation
- /* References
- * [igam1] "The Digital Library of Mathematical Functions", dlmf.nist.gov
- * [igam2] Maddock et. al., "Incomplete Gamma Functions",
- * https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
- */
- /*
- * This implementation of the regularized incomplete gamma functions and
- * their helper functions are derived from the implementation of SciPy's
- * gammainc, Cephes's igam and igamc, and Boost's Lanczos approximations.
- * See NOTICE for the licenses.
- */
- template <typename scalar_t>
- static scalar_t ratevl(scalar_t x, const scalar_t num[], int64_t M,
- const scalar_t denom[], int64_t N) {
- // evaluating rational function, i.e., the ratio of two polynomials
- // the coefficients for numerator are given by `num` while coeffs for
- // denumerator are given by `denom`
- int64_t i, dir;
- scalar_t y, num_ans, denom_ans;
- scalar_t absx = std::fabs(x);
- const scalar_t *p;
- if (absx > 1) {
- /* Evaluate as a polynomial in 1/x. */
- dir = -1;
- p = num + M;
- y = 1 / x;
- }
- else {
- dir = 1;
- p = num;
- y = x;
- }
- /* Evaluate the numerator */
- num_ans = *p;
- p += dir;
- for (i = 1; i <= M; i++) {
- num_ans = num_ans * y + *p;
- p += dir;
- }
- /* Evaluate the denominator */
- if (absx > 1) {
- p = denom + N;
- }
- else {
- p = denom;
- }
- denom_ans = *p;
- p += dir;
- for (i = 1; i <= N; i++) {
- denom_ans = denom_ans * y + *p;
- p += dir;
- }
- if (absx > 1) {
- i = N - M;
- return std::pow(x, i) * num_ans / denom_ans;
- }
- else {
- return num_ans / denom_ans;
- }
- }
- // SciPy's lanczos implementation is taken from Boost
- /* (C) Copyright John Maddock 2006.
- * Use, modification and distribution are subject to the
- * Boost Software License, Version 1.0. See
- * https://www.boost.org/LICENSE_1_0.txt or see NOTICE.
- */
- template <typename scalar_t>
- static scalar_t lanczos_sum_expg_scaled(scalar_t x) {
- // lanczos approximation
- static const scalar_t lanczos_sum_expg_scaled_num[13] = {
- 0.006061842346248906525783753964555936883222,
- 0.5098416655656676188125178644804694509993,
- 19.51992788247617482847860966235652136208,
- 449.9445569063168119446858607650988409623,
- 6955.999602515376140356310115515198987526,
- 75999.29304014542649875303443598909137092,
- 601859.6171681098786670226533699352302507,
- 3481712.15498064590882071018964774556468,
- 14605578.08768506808414169982791359218571,
- 43338889.32467613834773723740590533316085,
- 86363131.28813859145546927288977868422342,
- 103794043.1163445451906271053616070238554,
- 56906521.91347156388090791033559122686859
- };
- static const scalar_t lanczos_sum_expg_scaled_denom[13] = {
- 1.,
- 66.,
- 1925.,
- 32670.,
- 357423.,
- 2637558.,
- 13339535.,
- 45995730.,
- 105258076.,
- 150917976.,
- 120543840.,
- 39916800.,
- 0.
- };
- return ratevl(x, lanczos_sum_expg_scaled_num,
- sizeof(lanczos_sum_expg_scaled_num) / sizeof(lanczos_sum_expg_scaled_num[0]) - 1,
- lanczos_sum_expg_scaled_denom,
- sizeof(lanczos_sum_expg_scaled_denom) / sizeof(lanczos_sum_expg_scaled_denom[0]) - 1);
- }
- template <typename scalar_t>
- static scalar_t _igam_helper_fac(scalar_t a, scalar_t x) {
- // compute x^a * exp(-a) / gamma(a)
- // corrected from (15) and (16) in [igam2] by replacing exp(x - a) with
- // exp(a - x).
- scalar_t ax, fac, res, num, numfac;
- static scalar_t MAXLOG = std::is_same<scalar_t,double>::value ?
- 7.09782712893383996843E2 : 88.72283905206835;
- static scalar_t EXP1 = 2.718281828459045;
- static scalar_t lanczos_g = 6.024680040776729583740234375;
- if (std::fabs(a - x) > 0.4 * std::fabs(a)) {
- ax = a * std::log(x) - x - std::lgamma(a);
- if (ax < -MAXLOG) {
- return 0.0;
- }
- return std::exp(ax);
- }
- fac = a + lanczos_g - 0.5;
- res = std::sqrt(fac / EXP1) / lanczos_sum_expg_scaled(a);
- if ((a < 200) && (x < 200)) {
- res *= std::exp(a - x) * std::pow(x / fac, a);
- }
- else {
- num = x - a - lanczos_g + 0.5;
- numfac = num / fac;
- res *= std::exp(a * (std::log1p(numfac) - numfac) + x * (0.5 - lanczos_g) / fac);
- }
- return res;
- }
- template <typename scalar_t>
- static scalar_t _igam_helper_series(scalar_t a, scalar_t x) {
- // Compute igam using DLMF 8.11.4. [igam1]
- static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
- 1.11022302462515654042E-16 : 5.9604644775390625E-8;
- static int MAXITER = 2000;
- int i;
- scalar_t ans, ax, c, r;
- ax = _igam_helper_fac(a, x);
- if (ax == 0.0) {
- return 0.0;
- }
- /* power series */
- r = a;
- c = 1.0;
- ans = 1.0;
- for (i = 0; i < MAXITER; i++) {
- r += 1.0;
- c *= x / r;
- ans += c;
- if (c <= MACHEP * ans) {
- break;
- }
- }
- return (ans * ax / a);
- }
- template <typename scalar_t>
- static scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
- // Compute igamc using DLMF 8.7.3 [igam1]. This is related to the series in
- // _igam_helper_series but extra care is taken to avoid cancellation.
- int n;
- scalar_t fac = 1;
- scalar_t sum = 0;
- scalar_t term, logx;
- static scalar_t MAXITER = 2000;
- static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
- 1.11022302462515654042E-16 : 5.9604644775390625E-8;
- for (n = 1; n < MAXITER; n++) {
- fac *= -x / n;
- term = fac / (a + n);
- sum += term;
- if (std::fabs(term) <= MACHEP * std::fabs(sum)) {
- break;
- }
- }
- logx = std::log(x);
- term = -std::expm1(a * logx - std::lgamma(1+a));
- return term - std::exp(a * logx - std::lgamma(a)) * sum;
- }
- template <typename scalar_t>
- static scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t x, bool igam) {
- // Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
- static const scalar_t d[25][25] =
- {{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2,
- 1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4,
- 3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6,
- 8.296711340953086e-7, -1.7665952736826079e-7, 6.7078535434014986e-9,
- 1.0261809784240308e-8, -4.3820360184533532e-9, 9.1476995822367902e-10,
- -2.551419399494625e-11, -5.8307721325504251e-11, 2.4361948020667416e-11,
- -5.0276692801141756e-12, 1.1004392031956135e-13, 3.3717632624009854e-13,
- -1.3923887224181621e-13, 2.8534893807047443e-14, -5.1391118342425726e-16,
- -1.9752288294349443e-15},
- {-1.8518518518518519e-3, -3.4722222222222222e-3, 2.6455026455026455e-3,
- -9.9022633744855967e-4, 2.0576131687242798e-4, -4.0187757201646091e-7,
- -1.8098550334489978e-5, 7.6491609160811101e-6, -1.6120900894563446e-6,
- 4.6471278028074343e-9, 1.378633446915721e-7, -5.752545603517705e-8,
- 1.1951628599778147e-8, -1.7543241719747648e-11, -1.0091543710600413e-9,
- 4.1627929918425826e-10, -8.5639070264929806e-11, 6.0672151016047586e-14,
- 7.1624989648114854e-12, -2.9331866437714371e-12, 5.9966963656836887e-13,
- -2.1671786527323314e-16, -4.9783399723692616e-14, 2.0291628823713425e-14,
- -4.13125571381061e-15},
- {4.1335978835978836e-3, -2.6813271604938272e-3, 7.7160493827160494e-4,
- 2.0093878600823045e-6, -1.0736653226365161e-4, 5.2923448829120125e-5,
- -1.2760635188618728e-5, 3.4235787340961381e-8, 1.3721957309062933e-6,
- -6.298992138380055e-7, 1.4280614206064242e-7, -2.0477098421990866e-10,
- -1.4092529910867521e-8, 6.228974084922022e-9, -1.3670488396617113e-9,
- 9.4283561590146782e-13, 1.2872252400089318e-10, -5.5645956134363321e-11,
- 1.1975935546366981e-11, -4.1689782251838635e-15, -1.0940640427884594e-12,
- 4.6622399463901357e-13, -9.905105763906906e-14, 1.8931876768373515e-17,
- 8.8592218725911273e-15},
- {6.4943415637860082e-4, 2.2947209362139918e-4, -4.6918949439525571e-4,
- 2.6772063206283885e-4, -7.5618016718839764e-5, -2.3965051138672967e-7,
- 1.1082654115347302e-5, -5.6749528269915966e-6, 1.4230900732435884e-6,
- -2.7861080291528142e-11, -1.6958404091930277e-7, 8.0994649053880824e-8,
- -1.9111168485973654e-8, 2.3928620439808118e-12, 2.0620131815488798e-9,
- -9.4604966618551322e-10, 2.1541049775774908e-10, -1.388823336813903e-14,
- -2.1894761681963939e-11, 9.7909989511716851e-12, -2.1782191880180962e-12,
- 6.2088195734079014e-17, 2.126978363279737e-13, -9.3446887915174333e-14,
- 2.0453671226782849e-14},
- {-8.618882909167117e-4, 7.8403922172006663e-4, -2.9907248030319018e-4,
- -1.4638452578843418e-6, 6.6414982154651222e-5, -3.9683650471794347e-5,
- 1.1375726970678419e-5, 2.5074972262375328e-10, -1.6954149536558306e-6,
- 8.9075075322053097e-7, -2.2929348340008049e-7, 2.956794137544049e-11,
- 2.8865829742708784e-8, -1.4189739437803219e-8, 3.4463580499464897e-9,
- -2.3024517174528067e-13, -3.9409233028046405e-10, 1.8602338968504502e-10,
- -4.356323005056618e-11, 1.2786001016296231e-15, 4.6792750266579195e-12,
- -2.1492464706134829e-12, 4.9088156148096522e-13, -6.3385914848915603e-18,
- -5.0453320690800944e-14},
- {-3.3679855336635815e-4, -6.9728137583658578e-5, 2.7727532449593921e-4,
- -1.9932570516188848e-4, 6.7977804779372078e-5, 1.419062920643967e-7,
- -1.3594048189768693e-5, 8.0184702563342015e-6, -2.2914811765080952e-6,
- -3.252473551298454e-10, 3.4652846491085265e-7, -1.8447187191171343e-7,
- 4.8240967037894181e-8, -1.7989466721743515e-14, -6.3061945000135234e-9,
- 3.1624176287745679e-9, -7.8409242536974293e-10, 5.1926791652540407e-15,
- 9.3589442423067836e-11, -4.5134262161632782e-11, 1.0799129993116827e-11,
- -3.661886712685252e-17, -1.210902069055155e-12, 5.6807435849905643e-13,
- -1.3249659916340829e-13},
- {5.3130793646399222e-4, -5.9216643735369388e-4, 2.7087820967180448e-4,
- 7.9023532326603279e-7, -8.1539693675619688e-5, 5.6116827531062497e-5,
- -1.8329116582843376e-5, -3.0796134506033048e-9, 3.4651553688036091e-6,
- -2.0291327396058604e-6, 5.7887928631490037e-7, 2.338630673826657e-13,
- -8.8286007463304835e-8, 4.7435958880408128e-8, -1.2545415020710382e-8,
- 8.6496488580102925e-14, 1.6846058979264063e-9, -8.5754928235775947e-10,
- 2.1598224929232125e-10, -7.6132305204761539e-16, -2.6639822008536144e-11,
- 1.3065700536611057e-11, -3.1799163902367977e-12, 4.7109761213674315e-18,
- 3.6902800842763467e-13},
- {3.4436760689237767e-4, 5.1717909082605922e-5, -3.3493161081142236e-4,
- 2.812695154763237e-4, -1.0976582244684731e-4, -1.2741009095484485e-7,
- 2.7744451511563644e-5, -1.8263488805711333e-5, 5.7876949497350524e-6,
- 4.9387589339362704e-10, -1.0595367014026043e-6, 6.1667143761104075e-7,
- -1.7562973359060462e-7, -1.2974473287015439e-12, 2.695423606288966e-8,
- -1.4578352908731271e-8, 3.887645959386175e-9, -3.8810022510194121e-17,
- -5.3279941738772867e-10, 2.7437977643314845e-10, -6.9957960920705679e-11,
- 2.5899863874868481e-17, 8.8566890996696381e-12, -4.403168815871311e-12,
- 1.0865561947091654e-12},
- {-6.5262391859530942e-4, 8.3949872067208728e-4, -4.3829709854172101e-4,
- -6.969091458420552e-7, 1.6644846642067548e-4, -1.2783517679769219e-4,
- 4.6299532636913043e-5, 4.5579098679227077e-9, -1.0595271125805195e-5,
- 6.7833429048651666e-6, -2.1075476666258804e-6, -1.7213731432817145e-11,
- 3.7735877416110979e-7, -2.1867506700122867e-7, 6.2202288040189269e-8,
- 6.5977038267330006e-16, -9.5903864974256858e-9, 5.2132144922808078e-9,
- -1.3991589583935709e-9, 5.382058999060575e-16, 1.9484714275467745e-10,
- -1.0127287556389682e-10, 2.6077347197254926e-11, -5.0904186999932993e-18,
- -3.3721464474854592e-12},
- {-5.9676129019274625e-4, -7.2048954160200106e-5, 6.7823088376673284e-4,
- -6.4014752602627585e-4, 2.7750107634328704e-4, 1.8197008380465151e-7,
- -8.4795071170685032e-5, 6.105192082501531e-5, -2.1073920183404862e-5,
- -8.8585890141255994e-10, 4.5284535953805377e-6, -2.8427815022504408e-6,
- 8.7082341778646412e-7, 3.6886101871706965e-12, -1.5344695190702061e-7,
- 8.862466778790695e-8, -2.5184812301826817e-8, -1.0225912098215092e-14,
- 3.8969470758154777e-9, -2.1267304792235635e-9, 5.7370135528051385e-10,
- -1.887749850169741e-19, -8.0931538694657866e-11, 4.2382723283449199e-11,
- -1.1002224534207726e-11},
- {1.3324454494800656e-3, -1.9144384985654775e-3, 1.1089369134596637e-3,
- 9.932404122642299e-7, -5.0874501293093199e-4, 4.2735056665392884e-4,
- -1.6858853767910799e-4, -8.1301893922784998e-9, 4.5284402370562147e-5,
- -3.127053674781734e-5, 1.044986828530338e-5, 4.8435226265680926e-11,
- -2.1482565873456258e-6, 1.329369701097492e-6, -4.0295693092101029e-7,
- -1.7567877666323291e-13, 7.0145043163668257e-8, -4.040787734999483e-8,
- 1.1474026743371963e-8, 3.9642746853563325e-18, -1.7804938269892714e-9,
- 9.7480262548731646e-10, -2.6405338676507616e-10, 5.794875163403742e-18,
- 3.7647749553543836e-11},
- {1.579727660730835e-3, 1.6251626278391582e-4, -2.0633421035543276e-3,
- 2.1389686185689098e-3, -1.0108559391263003e-3, -3.9912705529919201e-7,
- 3.6235025084764691e-4, -2.8143901463712154e-4, 1.0449513336495887e-4,
- 2.1211418491830297e-9, -2.5779417251947842e-5, 1.7281818956040463e-5,
- -5.6413773872904282e-6, -1.1024320105776174e-11, 1.1223224418895175e-6,
- -6.8693396379526735e-7, 2.0653236975414887e-7, 4.6714772409838506e-14,
- -3.5609886164949055e-8, 2.0470855345905963e-8, -5.8091738633283358e-9,
- -1.332821287582869e-16, 9.0354604391335133e-10, -4.9598782517330834e-10,
- 1.3481607129399749e-10},
- {-4.0725121195140166e-3, 6.4033628338080698e-3, -4.0410161081676618e-3,
- -2.183732802866233e-6, 2.1740441801254639e-3, -1.9700440518418892e-3,
- 8.3595469747962458e-4, 1.9445447567109655e-8, -2.5779387120421696e-4,
- 1.9009987368139304e-4, -6.7696499937438965e-5, -1.4440629666426572e-10,
- 1.5712512518742269e-5, -1.0304008744776893e-5, 3.304517767401387e-6,
- 7.9829760242325709e-13, -6.4097794149313004e-7, 3.8894624761300056e-7,
- -1.1618347644948869e-7, -2.816808630596451e-15, 1.9878012911297093e-8,
- -1.1407719956357511e-8, 3.2355857064185555e-9, 4.1759468293455945e-20,
- -5.0423112718105824e-10},
- {-5.9475779383993003e-3, -5.4016476789260452e-4, 8.7910413550767898e-3,
- -9.8576315587856125e-3, 5.0134695031021538e-3, 1.2807521786221875e-6,
- -2.0626019342754683e-3, 1.7109128573523058e-3, -6.7695312714133799e-4,
- -6.9011545676562133e-9, 1.8855128143995902e-4, -1.3395215663491969e-4,
- 4.6263183033528039e-5, 4.0034230613321351e-11, -1.0255652921494033e-5,
- 6.612086372797651e-6, -2.0913022027253008e-6, -2.0951775649603837e-13,
- 3.9756029041993247e-7, -2.3956211978815887e-7, 7.1182883382145864e-8,
- 8.925574873053455e-16, -1.2101547235064676e-8, 6.9350618248334386e-9,
- -1.9661464453856102e-9},
- {1.7402027787522711e-2, -2.9527880945699121e-2, 2.0045875571402799e-2,
- 7.0289515966903407e-6, -1.2375421071343148e-2, 1.1976293444235254e-2,
- -5.4156038466518525e-3, -6.3290893396418616e-8, 1.8855118129005065e-3,
- -1.473473274825001e-3, 5.5515810097708387e-4, 5.2406834412550662e-10,
- -1.4357913535784836e-4, 9.9181293224943297e-5, -3.3460834749478311e-5,
- -3.5755837291098993e-12, 7.1560851960630076e-6, -4.5516802628155526e-6,
- 1.4236576649271475e-6, 1.8803149082089664e-14, -2.6623403898929211e-7,
- 1.5950642189595716e-7, -4.7187514673841102e-8, -6.5107872958755177e-17,
- 7.9795091026746235e-9},
- {3.0249124160905891e-2, 2.4817436002649977e-3, -4.9939134373457022e-2,
- 5.9915643009307869e-2, -3.2483207601623391e-2, -5.7212968652103441e-6,
- 1.5085251778569354e-2, -1.3261324005088445e-2, 5.5515262632426148e-3,
- 3.0263182257030016e-8, -1.7229548406756723e-3, 1.2893570099929637e-3,
- -4.6845138348319876e-4, -1.830259937893045e-10, 1.1449739014822654e-4,
- -7.7378565221244477e-5, 2.5625836246985201e-5, 1.0766165333192814e-12,
- -5.3246809282422621e-6, 3.349634863064464e-6, -1.0381253128684018e-6,
- -5.608909920621128e-15, 1.9150821930676591e-7, -1.1418365800203486e-7,
- 3.3654425209171788e-8},
- {-9.9051020880159045e-2, 1.7954011706123486e-1, -1.2989606383463778e-1,
- -3.1478872752284357e-5, 9.0510635276848131e-2, -9.2828824411184397e-2,
- 4.4412112839877808e-2, 2.7779236316835888e-7, -1.7229543805449697e-2,
- 1.4182925050891573e-2, -5.6214161633747336e-3, -2.39598509186381e-9,
- 1.6029634366079908e-3, -1.1606784674435773e-3, 4.1001337768153873e-4,
- 1.8365800754090661e-11, -9.5844256563655903e-5, 6.3643062337764708e-5,
- -2.076250624489065e-5, -1.1806020912804483e-13, 4.2131808239120649e-6,
- -2.6262241337012467e-6, 8.0770620494930662e-7, 6.0125912123632725e-16,
- -1.4729737374018841e-7},
- {-1.9994542198219728e-1, -1.5056113040026424e-2, 3.6470239469348489e-1,
- -4.6435192311733545e-1, 2.6640934719197893e-1, 3.4038266027147191e-5,
- -1.3784338709329624e-1, 1.276467178337056e-1, -5.6213828755200985e-2,
- -1.753150885483011e-7, 1.9235592956768113e-2, -1.5088821281095315e-2,
- 5.7401854451350123e-3, 1.0622382710310225e-9, -1.5335082692563998e-3,
- 1.0819320643228214e-3, -3.7372510193945659e-4, -6.6170909729031985e-12,
- 8.4263617380909628e-5, -5.5150706827483479e-5, 1.7769536448348069e-5,
- 3.8827923210205533e-14, -3.53513697488768e-6, 2.1865832130045269e-6,
- -6.6812849447625594e-7},
- {7.2438608504029431e-1, -1.3918010932653375, 1.0654143352413968,
- 1.876173868950258e-4, -8.2705501176152696e-1, 8.9352433347828414e-1,
- -4.4971003995291339e-1, -1.6107401567546652e-6, 1.9235590165271091e-1,
- -1.6597702160042609e-1, 6.8882222681814333e-2, 1.3910091724608687e-8,
- -2.146911561508663e-2, 1.6228980898865892e-2, -5.9796016172584256e-3,
- -1.1287469112826745e-10, 1.5167451119784857e-3, -1.0478634293553899e-3,
- 3.5539072889126421e-4, 8.1704322111801517e-13, -7.7773013442452395e-5,
- 5.0291413897007722e-5, -1.6035083867000518e-5, 1.2469354315487605e-14,
- 3.1369106244517615e-6},
- {1.6668949727276811, 1.165462765994632e-1, -3.3288393225018906,
- 4.4692325482864037, -2.6977693045875807, -2.600667859891061e-4,
- 1.5389017615694539, -1.4937962361134612, 6.8881964633233148e-1,
- 1.3077482004552385e-6, -2.5762963325596288e-1, 2.1097676102125449e-1,
- -8.3714408359219882e-2, -7.7920428881354753e-9, 2.4267923064833599e-2,
- -1.7813678334552311e-2, 6.3970330388900056e-3, 4.9430807090480523e-11,
- -1.5554602758465635e-3, 1.0561196919903214e-3, -3.5277184460472902e-4,
- 9.3002334645022459e-14, 7.5285855026557172e-5, -4.8186515569156351e-5,
- 1.5227271505597605e-5},
- {-6.6188298861372935, 1.3397985455142589e+1, -1.0789350606845146e+1,
- -1.4352254537875018e-3, 9.2333694596189809, -1.0456552819547769e+1,
- 5.5105526029033471, 1.2024439690716742e-5, -2.5762961164755816,
- 2.3207442745387179, -1.0045728797216284, -1.0207833290021914e-7,
- 3.3975092171169466e-1, -2.6720517450757468e-1, 1.0235252851562706e-1,
- 8.4329730484871625e-10, -2.7998284958442595e-2, 2.0066274144976813e-2,
- -7.0554368915086242e-3, 1.9402238183698188e-12, 1.6562888105449611e-3,
- -1.1082898580743683e-3, 3.654545161310169e-4, -5.1290032026971794e-11,
- -7.6340103696869031e-5},
- {-1.7112706061976095e+1, -1.1208044642899116, 3.7131966511885444e+1,
- -5.2298271025348962e+1, 3.3058589696624618e+1, 2.4791298976200222e-3,
- -2.061089403411526e+1, 2.088672775145582e+1, -1.0045703956517752e+1,
- -1.2238783449063012e-5, 4.0770134274221141, -3.473667358470195,
- 1.4329352617312006, 7.1359914411879712e-8, -4.4797257159115612e-1,
- 3.4112666080644461e-1, -1.2699786326594923e-1, -2.8953677269081528e-10,
- 3.3125776278259863e-2, -2.3274087021036101e-2, 8.0399993503648882e-3,
- -1.177805216235265e-9, -1.8321624891071668e-3, 1.2108282933588665e-3,
- -3.9479941246822517e-4},
- {7.389033153567425e+1, -1.5680141270402273e+2, 1.322177542759164e+2,
- 1.3692876877324546e-2, -1.2366496885920151e+2, 1.4620689391062729e+2,
- -8.0365587724865346e+1, -1.1259851148881298e-4, 4.0770132196179938e+1,
- -3.8210340013273034e+1, 1.719522294277362e+1, 9.3519707955168356e-7,
- -6.2716159907747034, 5.1168999071852637, -2.0319658112299095,
- -4.9507215582761543e-9, 5.9626397294332597e-1, -4.4220765337238094e-1,
- 1.6079998700166273e-1, -2.4733786203223402e-8, -4.0307574759979762e-2,
- 2.7849050747097869e-2, -9.4751858992054221e-3, 6.419922235909132e-6,
- 2.1250180774699461e-3},
- {2.1216837098382522e+2, 1.3107863022633868e+1, -4.9698285932871748e+2,
- 7.3121595266969204e+2, -4.8213821720890847e+2, -2.8817248692894889e-2,
- 3.2616720302947102e+2, -3.4389340280087117e+2, 1.7195193870816232e+2,
- 1.4038077378096158e-4, -7.52594195897599e+1, 6.651969984520934e+1,
- -2.8447519748152462e+1, -7.613702615875391e-7, 9.5402237105304373,
- -7.5175301113311376, 2.8943997568871961, -4.6612194999538201e-7,
- -8.0615149598794088e-1, 5.8483006570631029e-1, -2.0845408972964956e-1,
- 1.4765818959305817e-4, 5.1000433863753019e-2, -3.3066252141883665e-2,
- 1.5109265210467774e-2},
- {-9.8959643098322368e+2, 2.1925555360905233e+3, -1.9283586782723356e+3,
- -1.5925738122215253e-1, 1.9569985945919857e+3, -2.4072514765081556e+3,
- 1.3756149959336496e+3, 1.2920735237496668e-3, -7.525941715948055e+2,
- 7.3171668742208716e+2, -3.4137023466220065e+2, -9.9857390260608043e-6,
- 1.3356313181291573e+2, -1.1276295161252794e+2, 4.6310396098204458e+1,
- -7.9237387133614756e-6, -1.4510726927018646e+1, 1.1111771248100563e+1,
- -4.1690817945270892, 3.1008219800117808e-3, 1.1220095449981468,
- -7.6052379926149916e-1, 3.6262236505085254e-1, 2.216867741940747e-1,
- 4.8683443692930507e-1}};
- int k, n, sgn;
- int maxpow = 0;
- static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
- 1.11022302462515654042E-16 : 5.9604644775390625E-8;
- scalar_t lambda = x / a;
- scalar_t sigma = (x - a) / a;
- scalar_t eta, res, ck, ckterm, term, absterm;
- scalar_t absoldterm = INFINITY;
- scalar_t etapow[25] = {1};
- scalar_t sum = 0;
- scalar_t afac = 1;
- if (igam) {
- sgn = -1;
- }
- else {
- sgn = 1;
- }
- if (lambda > 1) {
- eta = std::sqrt(-2 * (std::log1p(sigma) - sigma));
- }
- else if (lambda < 1) {
- eta = -std::sqrt(-2 * (std::log1p(sigma) - sigma));
- }
- else {
- eta = 0;
- }
- res = 0.5 * std::erfc(sgn * eta * std::sqrt(a / 2));
- for (k = 0; k < 25; k++) {
- ck = d[k][0];
- for (n = 1; n < 25; n++) {
- if (n > maxpow) {
- etapow[n] = eta * etapow[n-1];
- maxpow += 1;
- }
- ckterm = d[k][n]*etapow[n];
- ck += ckterm;
- if (std::fabs(ckterm) < MACHEP * std::fabs(ck)) {
- break;
- }
- }
- term = ck * afac;
- absterm = std::fabs(term);
- if (absterm > absoldterm) {
- break;
- }
- sum += term;
- if (absterm < MACHEP * std::fabs(sum)) {
- break;
- }
- absoldterm = absterm;
- afac /= a;
- }
- res += sgn * std::exp(-0.5 * a * eta * eta) * sum / std::sqrt(2 * c10::pi<float> * a);
- return res;
- }
- template <typename scalar_t>
- static scalar_t _igamc_helper_continued_fraction(scalar_t a, scalar_t x) {
- // Compute igamc using DLMF 8.9.2. [igam1]
- int i;
- scalar_t ans, ax, c, yc, r, t, y, z;
- scalar_t pk, pkm1, pkm2, qk, qkm1, qkm2;
- int MAXITER = 2000;
- static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
- 1.11022302462515654042E-16 : 5.9604644775390625E-8;
- static scalar_t BIG = std::is_same<scalar_t,double>::value ?
- 4.503599627370496e15 : 16777216.;
- static scalar_t BIGINV = std::is_same<scalar_t,double>::value ?
- 2.22044604925031308085e-16 : 5.9604644775390625E-8;
- ax = _igam_helper_fac(a, x);
- if (ax == 0.0) {
- return 0.0;
- }
- /* continued fraction */
- y = 1.0 - a;
- z = x + y + 1.0;
- c = 0.0;
- pkm2 = 1.0;
- qkm2 = x;
- pkm1 = x + 1.0;
- qkm1 = z * x;
- ans = pkm1 / qkm1;
- for (i = 0; i < MAXITER; i++) {
- c += 1.0;
- y += 1.0;
- z += 2.0;
- yc = y * c;
- pk = pkm1 * z - pkm2 * yc;
- qk = qkm1 * z - qkm2 * yc;
- if (qk != 0) {
- r = pk / qk;
- t = std::fabs((ans - r) / r);
- ans = r;
- }
- else {
- t = 1.0;
- }
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if (std::fabs(pk) > BIG) {
- pkm2 *= BIGINV;
- pkm1 *= BIGINV;
- qkm2 *= BIGINV;
- qkm1 *= BIGINV;
- }
- if (t <= MACHEP) {
- break;
- }
- }
- return ans * ax;
- }
- template <typename scalar_t>
- static inline scalar_t calc_igammac(scalar_t a, scalar_t x) {
- /* the calculation of the regularized upper incomplete gamma function
- * is done differently based on the values of a and x:
- * - if x and/or a is at the boundary of defined region, then assign the
- * result at the boundary
- * - if a is large and a ~ x, then using Uniform Asymptotic Expansions for
- * Large Parameter (see DLMF 8.12.4 [igam1])
- * - if x > 1.1 and x < a, using the substraction from the regularized lower
- * incomplete gamma
- * - otherwise, calculate the series from [igam2] eq (5)
- */
- scalar_t absxma_a;
- static scalar_t SMALL = 20.0;
- static scalar_t LARGE = 200.0;
- static scalar_t SMALLRATIO = 0.3;
- static scalar_t LARGERATIO = 4.5;
- // note that in SciPy, a and x are non-negative, with exclusive 0s (i.e.,
- // at most 1 of them can be 0), where igammac(0, x) = 0.0 iff x > 0.
- if ((x < 0) || (a < 0)) {
- // out of defined-region of the function
- return std::numeric_limits<scalar_t>::quiet_NaN();
- }
- else if (a == 0) {
- if (x > 0) {
- return 0.0;
- }
- else {
- return std::numeric_limits<scalar_t>::quiet_NaN();
- }
- }
- else if (x == 0) {
- return 1.0;
- }
- else if (std::isinf(a)) {
- if (std::isinf(x)) {
- return std::numeric_limits<scalar_t>::quiet_NaN();
- }
- return 1.0;
- }
- else if (std::isinf(x)) {
- return 0.0;
- }
- absxma_a = std::fabs(x - a) / a;
- if ((a > SMALL) && (a < LARGE) && (absxma_a < SMALLRATIO)) {
- return _igam_helper_asymptotic_series(a, x, 0);
- }
- else if ((a > LARGE) && (absxma_a < LARGERATIO / std::sqrt(a))) {
- return _igam_helper_asymptotic_series(a, x, 0);
- }
- if (x > 1.1) {
- if (x < a) {
- return 1.0 - _igam_helper_series(a, x);
- }
- else {
- return _igamc_helper_continued_fraction(a, x);
- }
- }
- else if (x <= 0.5) {
- if (-0.4 / std::log(x) < a) {
- return 1.0 - _igam_helper_series(a, x);
- }
- else {
- return _igamc_helper_series(a, x);
- }
- }
- else {
- if (x * 1.1 < a) {
- return 1.0 - _igam_helper_series(a, x);
- }
- else {
- return _igamc_helper_series(a, x);
- }
- }
- }
- template <typename scalar_t>
- static inline scalar_t calc_igamma(scalar_t a, scalar_t x) {
- /* the calculation of the regularized lower incomplete gamma function
- * is done differently based on the values of a and x:
- * - if x and/or a is at the boundary of defined region, then assign the
- * result at the boundary
- * - if a is large and a ~ x, then using Uniform Asymptotic Expansions for
- * Large Parameter (see DLMF 8.12.3 [igam1])
- * - if x > 1 and x > a, using the substraction from the regularized upper
- * incomplete gamma
- * - otherwise, calculate the series from [igam2] eq (4)
- */
- scalar_t absxma_a;
- static scalar_t SMALL = 20.0;
- static scalar_t LARGE = 200.0;
- static scalar_t SMALLRATIO = 0.3;
- static scalar_t LARGERATIO = 4.5;
- // boundary values following SciPy
- // note that in SciPy, a and x are non-negative, with exclusive 0s (i.e.,
- // at most 1 of them can be 0), where igamma(0, x) = 1.0 iff x > 0.
- if ((x < 0) || (a < 0)) {
- // out of defined-region of the function
- return std::numeric_limits<scalar_t>::quiet_NaN();
- }
- else if (a == 0) {
- if (x > 0) {
- return 1.0;
- }
- else {
- return std::numeric_limits<scalar_t>::quiet_NaN();
- }
- }
- else if (x == 0) {
- return 0.0; // zero integration limit
- }
- else if (std::isinf(a)) {
- if (std::isinf(x)) {
- return std::numeric_limits<scalar_t>::quiet_NaN();
- }
- return 0.0;
- }
- else if (std::isinf(x)) {
- return 1.0;
- }
- /* Asymptotic regime where a ~ x. See [igam2] */
- absxma_a = std::fabs(x - a) / a;
- if ((a > SMALL) && (a < LARGE) && (absxma_a < SMALLRATIO)) {
- return _igam_helper_asymptotic_series(a, x, 1);
- }
- else if ((a > LARGE) && (absxma_a < LARGERATIO / std::sqrt(a))) {
- return _igam_helper_asymptotic_series(a, x, 1);
- }
- if ((x > 1.0) && (x > a)) {
- return 1.0 - calc_igammac(a, x);
- }
- return _igam_helper_series(a, x);
- }
- template <>
- C10_UNUSED c10::BFloat16 calc_igamma<c10::BFloat16>(c10::BFloat16 a, c10::BFloat16 x) {
- return calc_igamma<float>(float(a), float(x));
- }
- template <>
- C10_UNUSED c10::Half calc_igamma<c10::Half>(c10::Half a, c10::Half x) {
- return calc_igamma<float>(float(a), float(x));
- }
- template <>
- C10_UNUSED c10::BFloat16 calc_igammac<c10::BFloat16>(c10::BFloat16 a, c10::BFloat16 x) {
- return calc_igammac<float>(float(a), float(x));
- }
- template <>
- C10_UNUSED c10::Half calc_igammac<c10::Half>(c10::Half a, c10::Half x) {
- return calc_igammac<float>(float(a), float(x));
- }
- inline c10::BFloat16 calc_erfinv(c10::BFloat16 a) { return calc_erfinv(float(a)); }
- template <typename T>
- static T abs_impl(T v) {
- return std::abs(v);
- }
- template <>
- C10_UNUSED uint8_t abs_impl(uint8_t v) {
- return v;
- }
- template <typename T>
- static inline typename std::enable_if<std::is_integral<T>::value, T>::type
- calc_gcd(T a, T b) {
- a = abs_impl(a);
- b = abs_impl(b);
- while (a != 0) {
- T c = a;
- a = b % a;
- b = c;
- }
- return b;
- }
- template <typename T>
- C10_HOST_DEVICE T exp2_impl(T x) {
- return std::exp2(x);
- }
- template <typename T>
- C10_HOST_DEVICE c10::complex<T> exp2_impl(c10::complex<T> x) {
- // There is no std::exp2 overload for complex, so instead
- // use the identity 2^x = e^(ln(2) * x)
- constexpr auto ln2 = c10::ln_2<T>;
- return std::exp(ln2 * x);
- }
- /*
- * This function is derived from the implementation of the chbevl function in the Cephes Math Library.
- * See note [3-Clause BSD License for the Cephes Math Library].
- *
- * Evaluates the series
- *
- * len-1
- * - '
- * y = > array[i] T (x/2)
- * - i
- * i=0
- *
- * of Chebyshev polynomials Ti at argument x/2.
- *
- * Coefficients are stored in reverse order, i.e. the zero order term is last in the array. Note len is the number of
- * coefficients, not the order.
- *
- * If coefficients are for the interval a to b, x must have been transformed to x -> 2(2x - b - a)/(b-a) before
- * entering the routine. This maps x from (a, b) to (-1, 1), over which the Chebyshev polynomials are defined.
- *
- * If the coefficients are for the inverted interval, in which (a, b) is mapped to (1/b, 1/a), the transformation
- * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity, this becomes x -> 4a/x - 1.
- */
- template <typename T>
- static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
- chbevl(const T x, const T array[], size_t len) {
- T b0, b1, b2;
- b0 = array[0];
- b1 = static_cast<T>(0.0);
- for (size_t i = 1; i < len; ++i) {
- b2 = b1;
- b1 = b0;
- b0 = x * b1 - b2 + array[i];
- }
- return (static_cast<T>(0.5) * (b0 - b2));
- }
- /*
- * This function is derived from the implementation of the i0 function in the Cephes Math Library.
- * See note [3-Clause BSD License for the Cephes Math Library].
- *
- * Computes an approximation of the zeroth order modified Bessel function of the first kind.
- * The approximation is actually two (sub)approximations, both using a Chebyshev polynomial expansion.
- * One approximates the function over [0, 8], and the other over (8, infinity). This function takes the absolute value
- * of all inputs to convert them into the domain of the approximation.
- */
- template <typename T>
- static inline std::tuple<const T*, size_t> chebyshev_coefficients_i0e_A() {
- /* Chebyshev coefficients for exp(-x) I0(x)
- * in the interval [0,8].
- *
- * lim(x->0){ exp(-x) I0(x) } = 1.
- */
- static const T coeff[] = {
- -4.41534164647933937950E-18, 3.33079451882223809783E-17,
- -2.43127984654795469359E-16, 1.71539128555513303061E-15,
- -1.16853328779934516808E-14, 7.67618549860493561688E-14,
- -4.85644678311192946090E-13, 2.95505266312963983461E-12,
- -1.72682629144155570723E-11, 9.67580903537323691224E-11,
- -5.18979560163526290666E-10, 2.65982372468238665035E-9,
- -1.30002500998624804212E-8, 6.04699502254191894932E-8,
- -2.67079385394061173391E-7, 1.11738753912010371815E-6,
- -4.41673835845875056359E-6, 1.64484480707288970893E-5,
- -5.75419501008210370398E-5, 1.88502885095841655729E-4,
- -5.76375574538582365885E-4, 1.63947561694133579842E-3,
- -4.32430999505057594430E-3, 1.05464603945949983183E-2,
- -2.37374148058994688156E-2, 4.93052842396707084878E-2,
- -9.49010970480476444210E-2, 1.71620901522208775349E-1,
- -3.04682672343198398683E-1, 6.76795274409476084995E-1};
- return std::make_tuple(coeff, 30);
- };
- template <typename T>
- static inline std::tuple<const T*, size_t> chebyshev_coefficients_i0e_B() {
- /* Chebyshev coefficients for exp(-x) sqrt(x) I0(x)
- * in the inverted interval [8,infinity].
- *
- * lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi).
- */
- static const T coeff[] = {
- -7.23318048787475395456E-18, -4.83050448594418207126E-18,
- 4.46562142029675999901E-17, 3.46122286769746109310E-17,
- -2.82762398051658348494E-16, -3.42548561967721913462E-16,
- 1.77256013305652638360E-15, 3.81168066935262242075E-15,
- -9.55484669882830764870E-15, -4.15056934728722208663E-14,
- 1.54008621752140982691E-14, 3.85277838274214270114E-13,
- 7.18012445138366623367E-13, -1.79417853150680611778E-12,
- -1.32158118404477131188E-11, -3.14991652796324136454E-11,
- 1.18891471078464383424E-11, 4.94060238822496958910E-10,
- 3.39623202570838634515E-9, 2.26666899049817806459E-8,
- 2.04891858946906374183E-7, 2.89137052083475648297E-6,
- 6.88975834691682398426E-5, 3.36911647825569408990E-3,
- 8.04490411014108831608E-1};
- return std::make_tuple(coeff, 25);
- };
- template <typename T>
- static inline typename std::enable_if<std::is_same<double, T>::value, std::tuple<const T*, size_t>>::type
- chebyshev_coefficients_i1e_A() {
- /* Chebyshev coefficients for exp(-x) I1(x)
- * in the interval [0,8].
- *
- * lim(x->0){ exp(-x) I1(x) / x } = 1/2.
- */
- static const T coeff[] = {
- 2.77791411276104639959E-18, -2.11142121435816608115E-17,
- 1.55363195773620046921E-16, -1.10559694773538630805E-15,
- 7.60068429473540693410E-15, -5.04218550472791168711E-14,
- 3.22379336594557470981E-13, -1.98397439776494371520E-12,
- 1.17361862988909016308E-11, -6.66348972350202774223E-11,
- 3.62559028155211703701E-10, -1.88724975172282928790E-9,
- 9.38153738649577178388E-9, -4.44505912879632808065E-8,
- 2.00329475355213526229E-7, -8.56872026469545474066E-7,
- 3.47025130813767847674E-6, -1.32731636560394358279E-5,
- 4.78156510755005422638E-5, -1.61760815825896745588E-4,
- 5.12285956168575772895E-4, -1.51357245063125314899E-3,
- 4.15642294431288815669E-3, -1.05640848946261981558E-2,
- 2.47264490306265168283E-2, -5.29459812080949914269E-2,
- 1.02643658689847095384E-1, -1.76416518357834055153E-1,
- 2.52587186443633654823E-1};
- return std::make_tuple(coeff, 29);
- };
- template <typename T>
- static inline typename std::enable_if<std::is_same<float, T>::value, std::tuple<const T*, size_t>>::type
- chebyshev_coefficients_i1e_A() {
- /* Chebyshev coefficients for exp(-x) I1(x)
- * in the interval [0,8].
- *
- * lim(x->0){ exp(-x) I1(x) / x } = 1/2.
- */
- static const T coeff[] = {
- 9.38153738649577178388E-9f,
- -4.44505912879632808065E-8f,
- 2.00329475355213526229E-7f,
- -8.56872026469545474066E-7f,
- 3.47025130813767847674E-6f,
- -1.32731636560394358279E-5f,
- 4.78156510755005422638E-5f,
- -1.61760815825896745588E-4f,
- 5.12285956168575772895E-4f,
- -1.51357245063125314899E-3f,
- 4.15642294431288815669E-3f,
- -1.05640848946261981558E-2f,
- 2.47264490306265168283E-2f,
- -5.29459812080949914269E-2f,
- 1.02643658689847095384E-1f,
- -1.76416518357834055153E-1f,
- 2.52587186443633654823E-1f};
- return std::make_tuple(coeff, 17);
- };
- template <typename T>
- static inline typename std::enable_if<std::is_same<double, T>::value, std::tuple<const T*, size_t>>::type
- chebyshev_coefficients_i1e_B() {
- /* Chebyshev coefficients for exp(-x) sqrt(x) I1(x)
- * in the inverted interval [8,infinity].
- *
- * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi).
- */
- static const T coeff[] = {
- 7.51729631084210481353E-18, 4.41434832307170791151E-18,
- -4.65030536848935832153E-17, -3.20952592199342395980E-17,
- 2.96262899764595013876E-16, 3.30820231092092828324E-16,
- -1.88035477551078244854E-15, -3.81440307243700780478E-15,
- 1.04202769841288027642E-14, 4.27244001671195135429E-14,
- -2.10154184277266431302E-14, -4.08355111109219731823E-13,
- -7.19855177624590851209E-13, 2.03562854414708950722E-12,
- 1.41258074366137813316E-11, 3.25260358301548823856E-11,
- -1.89749581235054123450E-11, -5.58974346219658380687E-10,
- -3.83538038596423702205E-9, -2.63146884688951950684E-8,
- -2.51223623787020892529E-7, -3.88256480887769039346E-6,
- -1.10588938762623716291E-4, -9.76109749136146840777E-3,
- 7.78576235018280120474E-1};
- return std::make_tuple(coeff, 25);
- };
- template <typename T>
- static inline typename std::enable_if<std::is_same<float, T>::value, std::tuple<const T*, size_t>>::type
- chebyshev_coefficients_i1e_B() {
- /* Chebyshev coefficients for exp(-x) sqrt(x) I1(x)
- * in the inverted interval [8,infinity].
- *
- * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi).
- */
- static const T coeff[] = {
- -3.83538038596423702205E-9f,
- -2.63146884688951950684E-8f,
- -2.51223623787020892529E-7f,
- -3.88256480887769039346E-6f,
- -1.10588938762623716291E-4f,
- -9.76109749136146840777E-3f,
- 7.78576235018280120474E-1f};
- return std::make_tuple(coeff, 7);
- };
- template <typename T>
- static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
- calc_i0(T _x) {
- T x = std::abs(_x);
- if (x <= T{8.0}) {
- auto coeff_pair = chebyshev_coefficients_i0e_A<T>();
- auto A = std::get<0>(coeff_pair);
- auto len = std::get<1>(coeff_pair);
- T y = (x / T{2.0}) - T{2.0};
- return static_cast<T>(std::exp(x) * chbevl(y, A, len));
- }
- auto coeff_pair = chebyshev_coefficients_i0e_B<T>();
- auto B = std::get<0>(coeff_pair);
- auto len = std::get<1>(coeff_pair);
- return std::exp(x) * chbevl(T{32.0} / x - T{2.0}, B, len) / std::sqrt(x);
- }
- // Upcast bfloat16 input to float for numerical accuracy purposes
- static inline c10::BFloat16 calc_i0(c10::BFloat16 a) { return calc_i0(static_cast<float>(a)); }
- /*
- * This function is derived from the implementation of the i1 function in the Cephes Math Library.
- * See note [3-Clause BSD License for the Cephes Math Library].
- *
- * Computes an approximation of the first order modified Bessel function of the first kind.
- * The approximation is actually two (sub)approximations, both using a Chebyshev polynomial expansion.
- * One approximates the function over [0, 8], and the other over (8, infinity). This function takes the absolute value
- * of all inputs to convert them into the domain of the approximation.
- */
- template <typename T>
- static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
- calc_i1(T _x) {
- T x = std::abs(_x);
- if (x <= T{8.0}) {
- auto coeff_pair = chebyshev_coefficients_i1e_A<T>();
- auto A = std::get<0>(coeff_pair);
- auto len = std::get<1>(coeff_pair);
- T y = (x / T{2.0}) - T{2.0};
- const T out = std::exp(x) * x * chbevl(y, A, len);
- return (_x < T{0.0}) ? -out : out;
- }
- auto coeff_pair = chebyshev_coefficients_i1e_B<T>();
- auto B = std::get<0>(coeff_pair);
- auto len = std::get<1>(coeff_pair);
- const T out = (std::exp(x) * chbevl(T{32.0} / x - T{2.0}, B, len)) / std::sqrt(x);
- return (_x < T{0.0}) ? -out : out;
- }
- /*
- * This function is derived from the implementation of the i1e function in the Cephes Math Library.
- * See note [3-Clause BSD License for the Cephes Math Library].
- *
- * Computes an approximation of the exponentially scaled first order modified Bessel function of the first kind.
- * The approximation is actually two (sub)approximations, both using a Chebyshev polynomial expansion.
- * One approximates the function over [0, 8], and the other over (8, infinity). This function takes the absolute value
- * of all inputs to convert them into the domain of the approximation.
- */
- template <typename T>
- static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
- calc_i1e(T _x) {
- T x = std::abs(_x);
- if (x <= T{8.0}) {
- auto coeff_pair = chebyshev_coefficients_i1e_A<T>();
- auto A = std::get<0>(coeff_pair);
- auto len = std::get<1>(coeff_pair);
- T y = (x / T{2.0}) - T{2.0};
- const T out = chbevl(y, A, len) * x;
- return (_x < T{0.0}) ? -out : out;
- }
- auto coeff_pair = chebyshev_coefficients_i1e_B<T>();
- auto B = std::get<0>(coeff_pair);
- auto len = std::get<1>(coeff_pair);
- const auto out = chbevl(T{32.0} / x - T{2.0}, B, len) / std::sqrt(x);
- return (_x < T{0.0}) ? -out : out;
- }
- /*
- * This function is derived from the implementation of the i1e function in the Cephes Math Library.
- * See note [3-Clause BSD License for the Cephes Math Library].
- *
- * Computes the argument, x, for which the area under the Gaussian probability density function
- * (integrated from minus infinity to x) is equal to y.
- */
- template <typename T>
- static inline C10_HOST_DEVICE T calc_ndtri(T y0) {
- /* sqrt(2pi) */
- constexpr T s2pi = 2.50662827463100050242E0;
- constexpr T one = 1;
- constexpr T zero = 0;
- /* approximation for 0 <= |y - 0.5| <= 3/8 */
- static const T P0[5] = {
- -5.99633501014107895267E1,
- 9.80010754185999661536E1,
- -5.66762857469070293439E1,
- 1.39312609387279679503E1,
- -1.23916583867381258016E0,
- };
- static const T Q0[9] = {
- 1.00000000000000000000E0,
- 1.95448858338141759834E0,
- 4.67627912898881538453E0,
- 8.63602421390890590575E1,
- -2.25462687854119370527E2,
- 2.00260212380060660359E2,
- -8.20372256168333339912E1,
- 1.59056225126211695515E1,
- -1.18331621121330003142E0,
- };
- /* Approximation for interval z = sqrt(-2 log y ) between 2 and 8
- * i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14.
- */
- static const T P1[9] = {
- 4.05544892305962419923E0,
- 3.15251094599893866154E1,
- 5.71628192246421288162E1,
- 4.40805073893200834700E1,
- 1.46849561928858024014E1,
- 2.18663306850790267539E0,
- -1.40256079171354495875E-1,
- -3.50424626827848203418E-2,
- -8.57456785154685413611E-4,
- };
- static const T Q1[9] = {
- 1.00000000000000000000E0,
- 1.57799883256466749731E1,
- 4.53907635128879210584E1,
- 4.13172038254672030440E1,
- 1.50425385692907503408E1,
- 2.50464946208309415979E0,
- -1.42182922854787788574E-1,
- -3.80806407691578277194E-2,
- -9.33259480895457427372E-4,
- };
- /* Approximation for interval z = sqrt(-2 log y ) between 8 and 64
- * i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
- */
- static const T P2[9] = {
- 3.23774891776946035970E0,
- 6.91522889068984211695E0,
- 3.93881025292474443415E0,
- 1.33303460815807542389E0,
- 2.01485389549179081538E-1,
- 1.23716634817820021358E-2,
- 3.01581553508235416007E-4,
- 2.65806974686737550832E-6,
- 6.23974539184983293730E-9,
- };
- static const T Q2[9] = {
- 1.00000000000000000000E0,
- 6.02427039364742014255E0,
- 3.67983563856160859403E0,
- 1.37702099489081330271E0,
- 2.16236993594496635890E-1,
- 1.34204006088543189037E-2,
- 3.28014464682127739104E-4,
- 2.89247864745380683936E-6,
- 6.79019408009981274425E-9,
- };
- if (y0 == zero) {
- return -std::numeric_limits<T>::infinity();
- }
- if (y0 == one) {
- return std::numeric_limits<T>::infinity();
- }
- if (y0 < zero || y0 > one) {
- return std::numeric_limits<T>::quiet_NaN();
- }
- bool code = true;
- T y = y0;
- if (y > one - T{0.13533528323661269189}) { /* 0.135... = exp(-2) */
- y = one - y;
- code = false;
- }
- if (y > T{0.13533528323661269189}) {
- y = y - T{0.5};
- const T y2 = y * y;
- T x = y + y * (y2 * polevl(y2, P0, 4) / polevl(y2, Q0, 8));
- return (x * s2pi);
- }
- T x = ::sqrt(T{-2.0} * ::log(y));
- const T x0 = x - ::log(x) / x;
- const T z = one / x;
- T x1;
- if (x < T{8.0}) /* y > exp(-32) = 1.2664165549e-14 */
- {
- x1 = z * polevl(z, P1, 8) / polevl(z, Q1, 8);
- } else {
- x1 = z * polevl(z, P2, 8) / polevl(z, Q2, 8);
- }
- x = x0 - x1;
- if (code) {
- x = -x;
- }
- return x;
- }
- /* The next function is taken from http://ab-initio.mit.edu/Faddeev */
- /* Copyright (c) 2012 Massachusetts Institute of Technology
- *
- * Permission is hereby granted, free of charge, to any person obtaining
- * a copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice shall be
- * included in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
- * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
- * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
- * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
- /* erfcx(x) = exp(x^2) erfc(x) function, for real x, written by
- Steven G. Johnson, October 2012.
- This function combines a few different ideas.
- First, for x > 50, it uses a continued-fraction expansion (same as
- for the Faddeeva function, but with algebraic simplifications for z=i*x).
- Second, for 0 <= x <= 50, it uses Chebyshev polynomial approximations,
- but with two twists:
- a) It maps x to y = 4 / (4+x) in [0,1]. This simple transformation,
- inspired by a similar transformation in the octave-forge/specfun
- erfcx by Soren Hauberg, results in much faster Chebyshev convergence
- than other simple transformations I have examined.
- b) Instead of using a single Chebyshev polynomial for the entire
- [0,1] y interval, we break the interval up into 100 equal
- subintervals, with a switch/lookup table, and use much lower
- degree Chebyshev polynomials in each subinterval. This greatly
- improves performance in my tests.
- For x < 0, we use the relationship erfcx(-x) = 2 exp(x^2) - erfc(x),
- with the usual checks for overflow etcetera.
- Performance-wise, it seems to be substantially faster than either
- the SLATEC DERFC function [or an erfcx function derived therefrom]
- or Cody's CALERF function (from netlib.org/specfun), while
- retaining near machine precision in accuracy. */
- /* Given y100=100*y, where y = 4/(4+x) for x >= 0, compute erfc(x).
- Uses a look-up table of 100 different Chebyshev polynomials
- for y intervals [0,0.01], [0.01,0.02], ...., [0.99,1], generated
- with the help of Maple and a little shell script. This allows
- the Chebyshev polynomials to be of significantly lower degree (about 1/4)
- compared to fitting the whole [0,1] interval with a single polynomial. */
- template <typename T>
- C10_HOST_DEVICE static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
- erfcx_y100(T y100)
- {
- switch (static_cast<int>(y100)) {
- case 0: {
- T t = 2*y100 - 1;
- return 0.70878032454106438663e-3 + (0.71234091047026302958e-3 + (0.35779077297597742384e-5 + (0.17403143962587937815e-7 + (0.81710660047307788845e-10 + (0.36885022360434957634e-12 + 0.15917038551111111111e-14 * t) * t) * t) * t) * t) * t;
- }
- case 1: {
- T t = 2*y100 - 3;
- return 0.21479143208285144230e-2 + (0.72686402367379996033e-3 + (0.36843175430938995552e-5 + (0.18071841272149201685e-7 + (0.85496449296040325555e-10 + (0.38852037518534291510e-12 + 0.16868473576888888889e-14 * t) * t) * t) * t) * t) * t;
- }
- case 2: {
- T t = 2*y100 - 5;
- return 0.36165255935630175090e-2 + (0.74182092323555510862e-3 + (0.37948319957528242260e-5 + (0.18771627021793087350e-7 + (0.89484715122415089123e-10 + (0.40935858517772440862e-12 + 0.17872061464888888889e-14 * t) * t) * t) * t) * t) * t;
- }
- case 3: {
- T t = 2*y100 - 7;
- return 0.51154983860031979264e-2 + (0.75722840734791660540e-3 + (0.39096425726735703941e-5 + (0.19504168704300468210e-7 + (0.93687503063178993915e-10 + (0.43143925959079664747e-12 + 0.18939926435555555556e-14 * t) * t) * t) * t) * t) * t;
- }
- case 4: {
- T t = 2*y100 - 9;
- return 0.66457513172673049824e-2 + (0.77310406054447454920e-3 + (0.40289510589399439385e-5 + (0.20271233238288381092e-7 + (0.98117631321709100264e-10 + (0.45484207406017752971e-12 + 0.20076352213333333333e-14 * t) * t) * t) * t) * t) * t;
- }
- case 5: {
- T t = 2*y100 - 11;
- return 0.82082389970241207883e-2 + (0.78946629611881710721e-3 + (0.41529701552622656574e-5 + (0.21074693344544655714e-7 + (0.10278874108587317989e-9 + (0.47965201390613339638e-12 + 0.21285907413333333333e-14 * t) * t) * t) * t) * t) * t;
- }
- case 6: {
- T t = 2*y100 - 13;
- return 0.98039537275352193165e-2 + (0.80633440108342840956e-3 + (0.42819241329736982942e-5 + (0.21916534346907168612e-7 + (0.10771535136565470914e-9 + (0.50595972623692822410e-12 + 0.22573462684444444444e-14 * t) * t) * t) * t) * t) * t;
- }
- case 7: {
- T t = 2*y100 - 15;
- return 0.11433927298290302370e-1 + (0.82372858383196561209e-3 + (0.44160495311765438816e-5 + (0.22798861426211986056e-7 + (0.11291291745879239736e-9 + (0.53386189365816880454e-12 + 0.23944209546666666667e-14 * t) * t) * t) * t) * t) * t;
- }
- case 8: {
- T t = 2*y100 - 17;
- return 0.13099232878814653979e-1 + (0.84167002467906968214e-3 + (0.45555958988457506002e-5 + (0.23723907357214175198e-7 + (0.11839789326602695603e-9 + (0.56346163067550237877e-12 + 0.25403679644444444444e-14 * t) * t) * t) * t) * t) * t;
- }
- case 9: {
- T t = 2*y100 - 19;
- return 0.14800987015587535621e-1 + (0.86018092946345943214e-3 + (0.47008265848816866105e-5 + (0.24694040760197315333e-7 + (0.12418779768752299093e-9 + (0.59486890370320261949e-12 + 0.26957764568888888889e-14 * t) * t) * t) * t) * t) * t;
- }
- case 10: {
- T t = 2*y100 - 21;
- return 0.16540351739394069380e-1 + (0.87928458641241463952e-3 + (0.48520195793001753903e-5 + (0.25711774900881709176e-7 + (0.13030128534230822419e-9 + (0.62820097586874779402e-12 + 0.28612737351111111111e-14 * t) * t) * t) * t) * t) * t;
- }
- case 11: {
- T t = 2*y100 - 23;
- return 0.18318536789842392647e-1 + (0.89900542647891721692e-3 + (0.50094684089553365810e-5 + (0.26779777074218070482e-7 + (0.13675822186304615566e-9 + (0.66358287745352705725e-12 + 0.30375273884444444444e-14 * t) * t) * t) * t) * t) * t;
- }
- case 12: {
- T t = 2*y100 - 25;
- return 0.20136801964214276775e-1 + (0.91936908737673676012e-3 + (0.51734830914104276820e-5 + (0.27900878609710432673e-7 + (0.14357976402809042257e-9 + (0.70114790311043728387e-12 + 0.32252476000000000000e-14 * t) * t) * t) * t) * t) * t;
- }
- case 13: {
- T t = 2*y100 - 27;
- return 0.21996459598282740954e-1 + (0.94040248155366777784e-3 + (0.53443911508041164739e-5 + (0.29078085538049374673e-7 + (0.15078844500329731137e-9 + (0.74103813647499204269e-12 + 0.34251892320000000000e-14 * t) * t) * t) * t) * t) * t;
- }
- case 14: {
- T t = 2*y100 - 29;
- return 0.23898877187226319502e-1 + (0.96213386835900177540e-3 + (0.55225386998049012752e-5 + (0.30314589961047687059e-7 + (0.15840826497296335264e-9 + (0.78340500472414454395e-12 + 0.36381553564444444445e-14 * t) * t) * t) * t) * t) * t;
- }
- case 15: {
- T t = 2*y100 - 31;
- return 0.25845480155298518485e-1 + (0.98459293067820123389e-3 + (0.57082915920051843672e-5 + (0.31613782169164830118e-7 + (0.16646478745529630813e-9 + (0.82840985928785407942e-12 + 0.38649975768888888890e-14 * t) * t) * t) * t) * t) * t;
- }
- case 16: {
- T t = 2*y100 - 33;
- return 0.27837754783474696598e-1 + (0.10078108563256892757e-2 + (0.59020366493792212221e-5 + (0.32979263553246520417e-7 + (0.17498524159268458073e-9 + (0.87622459124842525110e-12 + 0.41066206488888888890e-14 * t) * t) * t) * t) * t) * t;
- }
- case 17: {
- T t = 2*y100 - 35;
- return 0.29877251304899307550e-1 + (0.10318204245057349310e-2 + (0.61041829697162055093e-5 + (0.34414860359542720579e-7 + (0.18399863072934089607e-9 + (0.92703227366365046533e-12 + 0.43639844053333333334e-14 * t) * t) * t) * t) * t) * t;
- }
- case 18: {
- T t = 2*y100 - 37;
- return 0.31965587178596443475e-1 + (0.10566560976716574401e-2 + (0.63151633192414586770e-5 + (0.35924638339521924242e-7 + (0.19353584758781174038e-9 + (0.98102783859889264382e-12 + 0.46381060817777777779e-14 * t) * t) * t) * t) * t) * t;
- }
- case 19: {
- T t = 2*y100 - 39;
- return 0.34104450552588334840e-1 + (0.10823541191350532574e-2 + (0.65354356159553934436e-5 + (0.37512918348533521149e-7 + (0.20362979635817883229e-9 + (0.10384187833037282363e-11 + 0.49300625262222222221e-14 * t) * t) * t) * t) * t) * t;
- }
- case 20: {
- T t = 2*y100 - 41;
- return 0.36295603928292425716e-1 + (0.11089526167995268200e-2 + (0.67654845095518363577e-5 + (0.39184292949913591646e-7 + (0.21431552202133775150e-9 + (0.10994259106646731797e-11 + 0.52409949102222222221e-14 * t) * t) * t) * t) * t) * t;
- }
- case 21: {
- T t = 2*y100 - 43;
- return 0.38540888038840509795e-1 + (0.11364917134175420009e-2 + (0.70058230641246312003e-5 + (0.40943644083718586939e-7 + (0.22563034723692881631e-9 + (0.11642841011361992885e-11 + 0.55721092871111111110e-14 * t) * t) * t) * t) * t) * t;
- }
- case 22: {
- T t = 2*y100 - 45;
- return 0.40842225954785960651e-1 + (0.11650136437945673891e-2 + (0.72569945502343006619e-5 + (0.42796161861855042273e-7 + (0.23761401711005024162e-9 + (0.12332431172381557035e-11 + 0.59246802364444444445e-14 * t) * t) * t) * t) * t) * t;
- }
- case 23: {
- T t = 2*y100 - 47;
- return 0.43201627431540222422e-1 + (0.11945628793917272199e-2 + (0.75195743532849206263e-5 + (0.44747364553960993492e-7 + (0.25030885216472953674e-9 + (0.13065684400300476484e-11 + 0.63000532853333333334e-14 * t) * t) * t) * t) * t) * t;
- }
- case 24: {
- T t = 2*y100 - 49;
- return 0.45621193513810471438e-1 + (0.12251862608067529503e-2 + (0.77941720055551920319e-5 + (0.46803119830954460212e-7 + (0.26375990983978426273e-9 + (0.13845421370977119765e-11 + 0.66996477404444444445e-14 * t) * t) * t) * t) * t) * t;
- }
- case 25: {
- T t = 2*y100 - 51;
- return 0.48103121413299865517e-1 + (0.12569331386432195113e-2 + (0.80814333496367673980e-5 + (0.48969667335682018324e-7 + (0.27801515481905748484e-9 + (0.14674637611609884208e-11 + 0.71249589351111111110e-14 * t) * t) * t) * t) * t) * t;
- }
- case 26: {
- T t = 2*y100 - 53;
- return 0.50649709676983338501e-1 + (0.12898555233099055810e-2 + (0.83820428414568799654e-5 + (0.51253642652551838659e-7 + (0.29312563849675507232e-9 + (0.15556512782814827846e-11 + 0.75775607822222222221e-14 * t) * t) * t) * t) * t) * t;
- }
- case 27: {
- T t = 2*y100 - 55;
- return 0.53263363664388864181e-1 + (0.13240082443256975769e-2 + (0.86967260015007658418e-5 + (0.53662102750396795566e-7 + (0.30914568786634796807e-9 + (0.16494420240828493176e-11 + 0.80591079644444444445e-14 * t) * t) * t) * t) * t) * t;
- }
- case 28: {
- T t = 2*y100 - 57;
- return 0.55946601353500013794e-1 + (0.13594491197408190706e-2 + (0.90262520233016380987e-5 + (0.56202552975056695376e-7 + (0.32613310410503135996e-9 + (0.17491936862246367398e-11 + 0.85713381688888888890e-14 * t) * t) * t) * t) * t) * t;
- }
- case 29: {
- T t = 2*y100 - 59;
- return 0.58702059496154081813e-1 + (0.13962391363223647892e-2 + (0.93714365487312784270e-5 + (0.58882975670265286526e-7 + (0.34414937110591753387e-9 + (0.18552853109751857859e-11 + 0.91160736711111111110e-14 * t) * t) * t) * t) * t) * t;
- }
- case 30: {
- T t = 2*y100 - 61;
- return 0.61532500145144778048e-1 + (0.14344426411912015247e-2 + (0.97331446201016809696e-5 + (0.61711860507347175097e-7 + (0.36325987418295300221e-9 + (0.19681183310134518232e-11 + 0.96952238400000000000e-14 * t) * t) * t) * t) * t) * t;
- }
- case 31: {
- T t = 2*y100 - 63;
- return 0.64440817576653297993e-1 + (0.14741275456383131151e-2 + (0.10112293819576437838e-4 + (0.64698236605933246196e-7 + (0.38353412915303665586e-9 + (0.20881176114385120186e-11 + 0.10310784480000000000e-13 * t) * t) * t) * t) * t) * t;
- }
- case 32: {
- T t = 2*y100 - 65;
- return 0.67430045633130393282e-1 + (0.15153655418916540370e-2 + (0.10509857606888328667e-4 + (0.67851706529363332855e-7 + (0.40504602194811140006e-9 + (0.22157325110542534469e-11 + 0.10964842115555555556e-13 * t) * t) * t) * t) * t) * t;
- }
- case 33: {
- T t = 2*y100 - 67;
- return 0.70503365513338850709e-1 + (0.15582323336495709827e-2 + (0.10926868866865231089e-4 + (0.71182482239613507542e-7 + (0.42787405890153386710e-9 + (0.23514379522274416437e-11 + 0.11659571751111111111e-13 * t) * t) * t) * t) * t) * t;
- }
- case 34: {
- T t = 2*y100 - 69;
- return 0.73664114037944596353e-1 + (0.16028078812438820413e-2 + (0.11364423678778207991e-4 + (0.74701423097423182009e-7 + (0.45210162777476488324e-9 + (0.24957355004088569134e-11 + 0.12397238257777777778e-13 * t) * t) * t) * t) * t) * t;
- }
- case 35: {
- T t = 2*y100 - 71;
- return 0.76915792420819562379e-1 + (0.16491766623447889354e-2 + (0.11823685320041302169e-4 + (0.78420075993781544386e-7 + (0.47781726956916478925e-9 + (0.26491544403815724749e-11 + 0.13180196462222222222e-13 * t) * t) * t) * t) * t) * t;
- }
- case 36: {
- T t = 2*y100 - 73;
- return 0.80262075578094612819e-1 + (0.16974279491709504117e-2 + (0.12305888517309891674e-4 + (0.82350717698979042290e-7 + (0.50511496109857113929e-9 + (0.28122528497626897696e-11 + 0.14010889635555555556e-13 * t) * t) * t) * t) * t) * t;
- }
- case 37: {
- T t = 2*y100 - 75;
- return 0.83706822008980357446e-1 + (0.17476561032212656962e-2 + (0.12812343958540763368e-4 + (0.86506399515036435592e-7 + (0.53409440823869467453e-9 + (0.29856186620887555043e-11 + 0.14891851591111111111e-13 * t) * t) * t) * t) * t) * t;
- }
- case 38: {
- T t = 2*y100 - 77;
- return 0.87254084284461718231e-1 + (0.17999608886001962327e-2 + (0.13344443080089492218e-4 + (0.90900994316429008631e-7 + (0.56486134972616465316e-9 + (0.31698707080033956934e-11 + 0.15825697795555555556e-13 * t) * t) * t) * t) * t) * t;
- }
- case 39: {
- T t = 2*y100 - 79;
- return 0.90908120182172748487e-1 + (0.18544478050657699758e-2 + (0.13903663143426120077e-4 + (0.95549246062549906177e-7 + (0.59752787125242054315e-9 + (0.33656597366099099413e-11 + 0.16815130613333333333e-13 * t) * t) * t) * t) * t) * t;
- }
- case 40: {
- T t = 2*y100 - 81;
- return 0.94673404508075481121e-1 + (0.19112284419887303347e-2 + (0.14491572616545004930e-4 + (0.10046682186333613697e-6 + (0.63221272959791000515e-9 + (0.35736693975589130818e-11 + 0.17862931591111111111e-13 * t) * t) * t) * t) * t) * t;
- }
- case 41: {
- T t = 2*y100 - 83;
- return 0.98554641648004456555e-1 + (0.19704208544725622126e-2 + (0.15109836875625443935e-4 + (0.10567036667675984067e-6 + (0.66904168640019354565e-9 + (0.37946171850824333014e-11 + 0.18971959040000000000e-13 * t) * t) * t) * t) * t) * t;
- }
- case 42: {
- T t = 2*y100 - 85;
- return 0.10255677889470089531e0 + (0.20321499629472857418e-2 + (0.15760224242962179564e-4 + (0.11117756071353507391e-6 + (0.70814785110097658502e-9 + (0.40292553276632563925e-11 + 0.20145143075555555556e-13 * t) * t) * t) * t) * t) * t;
- }
- case 43: {
- T t = 2*y100 - 87;
- return 0.10668502059865093318e0 + (0.20965479776148731610e-2 + (0.16444612377624983565e-4 + (0.11700717962026152749e-6 + (0.74967203250938418991e-9 + (0.42783716186085922176e-11 + 0.21385479360000000000e-13 * t) * t) * t) * t) * t) * t;
- }
- case 44: {
- T t = 2*y100 - 89;
- return 0.11094484319386444474e0 + (0.21637548491908170841e-2 + (0.17164995035719657111e-4 + (0.12317915750735938089e-6 + (0.79376309831499633734e-9 + (0.45427901763106353914e-11 + 0.22696025653333333333e-13 * t) * t) * t) * t) * t) * t;
- }
- case 45: {
- T t = 2*y100 - 91;
- return 0.11534201115268804714e0 + (0.22339187474546420375e-2 + (0.17923489217504226813e-4 + (0.12971465288245997681e-6 + (0.84057834180389073587e-9 + (0.48233721206418027227e-11 + 0.24079890062222222222e-13 * t) * t) * t) * t) * t) * t;
- }
- case 46: {
- T t = 2*y100 - 93;
- return 0.11988259392684094740e0 + (0.23071965691918689601e-2 + (0.18722342718958935446e-4 + (0.13663611754337957520e-6 + (0.89028385488493287005e-9 + (0.51210161569225846701e-11 + 0.25540227111111111111e-13 * t) * t) * t) * t) * t) * t;
- }
- case 47: {
- T t = 2*y100 - 95;
- return 0.12457298393509812907e0 + (0.23837544771809575380e-2 + (0.19563942105711612475e-4 + (0.14396736847739470782e-6 + (0.94305490646459247016e-9 + (0.54366590583134218096e-11 + 0.27080225920000000000e-13 * t) * t) * t) * t) * t) * t;
- }
- case 48: {
- T t = 2*y100 - 97;
- return 0.12941991566142438816e0 + (0.24637684719508859484e-2 + (0.20450821127475879816e-4 + (0.15173366280523906622e-6 + (0.99907632506389027739e-9 + (0.57712760311351625221e-11 + 0.28703099555555555556e-13 * t) * t) * t) * t) * t) * t;
- }
- case 49: {
- T t = 2*y100 - 99;
- return 0.13443048593088696613e0 + (0.25474249981080823877e-2 + (0.21385669591362915223e-4 + (0.15996177579900443030e-6 + (0.10585428844575134013e-8 + (0.61258809536787882989e-11 + 0.30412080142222222222e-13 * t) * t) * t) * t) * t) * t;
- }
- case 50: {
- T t = 2*y100 - 101;
- return 0.13961217543434561353e0 + (0.26349215871051761416e-2 + (0.22371342712572567744e-4 + (0.16868008199296822247e-6 + (0.11216596910444996246e-8 + (0.65015264753090890662e-11 + 0.32210394506666666666e-13 * t) * t) * t) * t) * t) * t;
- }
- case 51: {
- T t = 2*y100 - 103;
- return 0.14497287157673800690e0 + (0.27264675383982439814e-2 + (0.23410870961050950197e-4 + (0.17791863939526376477e-6 + (0.11886425714330958106e-8 + (0.68993039665054288034e-11 + 0.34101266222222222221e-13 * t) * t) * t) * t) * t) * t;
- }
- case 52: {
- T t = 2*y100 - 105;
- return 0.15052089272774618151e0 + (0.28222846410136238008e-2 + (0.24507470422713397006e-4 + (0.18770927679626136909e-6 + (0.12597184587583370712e-8 + (0.73203433049229821618e-11 + 0.36087889048888888890e-13 * t) * t) * t) * t) * t) * t;
- }
- case 53: {
- T t = 2*y100 - 107;
- return 0.15626501395774612325e0 + (0.29226079376196624949e-2 + (0.25664553693768450545e-4 + (0.19808568415654461964e-6 + (0.13351257759815557897e-8 + (0.77658124891046760667e-11 + 0.38173420035555555555e-13 * t) * t) * t) * t) * t) * t;
- }
- case 54: {
- T t = 2*y100 - 109;
- return 0.16221449434620737567e0 + (0.30276865332726475672e-2 + (0.26885741326534564336e-4 + (0.20908350604346384143e-6 + (0.14151148144240728728e-8 + (0.82369170665974313027e-11 + 0.40360957457777777779e-13 * t) * t) * t) * t) * t) * t;
- }
- case 55: {
- T t = 2*y100 - 111;
- return 0.16837910595412130659e0 + (0.31377844510793082301e-2 + (0.28174873844911175026e-4 + (0.22074043807045782387e-6 + (0.14999481055996090039e-8 + (0.87348993661930809254e-11 + 0.42653528977777777779e-13 * t) * t) * t) * t) * t) * t;
- }
- case 56: {
- T t = 2*y100 - 113;
- return 0.17476916455659369953e0 + (0.32531815370903068316e-2 + (0.29536024347344364074e-4 + (0.23309632627767074202e-6 + (0.15899007843582444846e-8 + (0.92610375235427359475e-11 + 0.45054073102222222221e-13 * t) * t) * t) * t) * t) * t;
- }
- case 57: {
- T t = 2*y100 - 115;
- return 0.18139556223643701364e0 + (0.33741744168096996041e-2 + (0.30973511714709500836e-4 + (0.24619326937592290996e-6 + (0.16852609412267750744e-8 + (0.98166442942854895573e-11 + 0.47565418097777777779e-13 * t) * t) * t) * t) * t) * t;
- }
- case 58: {
- T t = 2*y100 - 117;
- return 0.18826980194443664549e0 + (0.35010775057740317997e-2 + (0.32491914440014267480e-4 + (0.26007572375886319028e-6 + (0.17863299617388376116e-8 + (0.10403065638343878679e-10 + 0.50190265831111111110e-13 * t) * t) * t) * t) * t) * t;
- }
- case 59: {
- T t = 2*y100 - 119;
- return 0.19540403413693967350e0 + (0.36342240767211326315e-2 + (0.34096085096200907289e-4 + (0.27479061117017637474e-6 + (0.18934228504790032826e-8 + (0.11021679075323598664e-10 + 0.52931171733333333334e-13 * t) * t) * t) * t) * t) * t;
- }
- case 60: {
- T t = 2*y100 - 121;
- return 0.20281109560651886959e0 + (0.37739673859323597060e-2 + (0.35791165457592409054e-4 + (0.29038742889416172404e-6 + (0.20068685374849001770e-8 + (0.11673891799578381999e-10 + 0.55790523093333333334e-13 * t) * t) * t) * t) * t) * t;
- }
- case 61: {
- T t = 2*y100 - 123;
- return 0.21050455062669334978e0 + (0.39206818613925652425e-2 + (0.37582602289680101704e-4 + (0.30691836231886877385e-6 + (0.21270101645763677824e-8 + (0.12361138551062899455e-10 + 0.58770520160000000000e-13 * t) * t) * t) * t) * t) * t;
- }
- case 62: {
- T t = 2*y100 - 125;
- return 0.21849873453703332479e0 + (0.40747643554689586041e-2 + (0.39476163820986711501e-4 + (0.32443839970139918836e-6 + (0.22542053491518680200e-8 + (0.13084879235290858490e-10 + 0.61873153262222222221e-13 * t) * t) * t) * t) * t) * t;
- }
- case 63: {
- T t = 2*y100 - 127;
- return 0.22680879990043229327e0 + (0.42366354648628516935e-2 + (0.41477956909656896779e-4 + (0.34300544894502810002e-6 + (0.23888264229264067658e-8 + (0.13846596292818514601e-10 + 0.65100183751111111110e-13 * t) * t) * t) * t) * t) * t;
- }
- case 64: {
- T t = 2*y100 - 129;
- return 0.23545076536988703937e0 + (0.44067409206365170888e-2 + (0.43594444916224700881e-4 + (0.36268045617760415178e-6 + (0.25312606430853202748e-8 + (0.14647791812837903061e-10 + 0.68453122631111111110e-13 * t) * t) * t) * t) * t) * t;
- }
- case 65: {
- T t = 2*y100 - 131;
- return 0.24444156740777432838e0 + (0.45855530511605787178e-2 + (0.45832466292683085475e-4 + (0.38352752590033030472e-6 + (0.26819103733055603460e-8 + (0.15489984390884756993e-10 + 0.71933206364444444445e-13 * t) * t) * t) * t) * t) * t;
- }
- case 66: {
- T t = 2*y100 - 133;
- return 0.25379911500634264643e0 + (0.47735723208650032167e-2 + (0.48199253896534185372e-4 + (0.40561404245564732314e-6 + (0.28411932320871165585e-8 + (0.16374705736458320149e-10 + 0.75541379822222222221e-13 * t) * t) * t) * t) * t) * t;
- }
- case 67: {
- T t = 2*y100 - 135;
- return 0.26354234756393613032e0 + (0.49713289477083781266e-2 + (0.50702455036930367504e-4 + (0.42901079254268185722e-6 + (0.30095422058900481753e-8 + (0.17303497025347342498e-10 + 0.79278273368888888890e-13 * t) * t) * t) * t) * t) * t;
- }
- case 68: {
- T t = 2*y100 - 137;
- return 0.27369129607732343398e0 + (0.51793846023052643767e-2 + (0.53350152258326602629e-4 + (0.45379208848865015485e-6 + (0.31874057245814381257e-8 + (0.18277905010245111046e-10 + 0.83144182364444444445e-13 * t) * t) * t) * t) * t) * t;
- }
- case 69: {
- T t = 2*y100 - 139;
- return 0.28426714781640316172e0 + (0.53983341916695141966e-2 + (0.56150884865255810638e-4 + (0.48003589196494734238e-6 + (0.33752476967570796349e-8 + (0.19299477888083469086e-10 + 0.87139049137777777779e-13 * t) * t) * t) * t) * t) * t;
- }
- case 70: {
- T t = 2*y100 - 141;
- return 0.29529231465348519920e0 + (0.56288077305420795663e-2 + (0.59113671189913307427e-4 + (0.50782393781744840482e-6 + (0.35735475025851713168e-8 + (0.20369760937017070382e-10 + 0.91262442613333333334e-13 * t) * t) * t) * t) * t) * t;
- }
- case 71: {
- T t = 2*y100 - 143;
- return 0.30679050522528838613e0 + (0.58714723032745403331e-2 + (0.62248031602197686791e-4 + (0.53724185766200945789e-6 + (0.37827999418960232678e-8 + (0.21490291930444538307e-10 + 0.95513539182222222221e-13 * t) * t) * t) * t) * t) * t;
- }
- case 72: {
- T t = 2*y100 - 145;
- return 0.31878680111173319425e0 + (0.61270341192339103514e-2 + (0.65564012259707640976e-4 + (0.56837930287837738996e-6 + (0.40035151353392378882e-8 + (0.22662596341239294792e-10 + 0.99891109760000000000e-13 * t) * t) * t) * t) * t) * t;
- }
- case 73: {
- T t = 2*y100 - 147;
- return 0.33130773722152622027e0 + (0.63962406646798080903e-2 + (0.69072209592942396666e-4 + (0.60133006661885941812e-6 + (0.42362183765883466691e-8 + (0.23888182347073698382e-10 + 0.10439349811555555556e-12 * t) * t) * t) * t) * t) * t;
- }
- case 74: {
- T t = 2*y100 - 149;
- return 0.34438138658041336523e0 + (0.66798829540414007258e-2 + (0.72783795518603561144e-4 + (0.63619220443228800680e-6 + (0.44814499336514453364e-8 + (0.25168535651285475274e-10 + 0.10901861383111111111e-12 * t) * t) * t) * t) * t) * t;
- }
- case 75: {
- T t = 2*y100 - 151;
- return 0.35803744972380175583e0 + (0.69787978834882685031e-2 + (0.76710543371454822497e-4 + (0.67306815308917386747e-6 + (0.47397647975845228205e-8 + (0.26505114141143050509e-10 + 0.11376390933333333333e-12 * t) * t) * t) * t) * t) * t;
- }
- case 76: {
- T t = 2*y100 - 153;
- return 0.37230734890119724188e0 + (0.72938706896461381003e-2 + (0.80864854542670714092e-4 + (0.71206484718062688779e-6 + (0.50117323769745883805e-8 + (0.27899342394100074165e-10 + 0.11862637614222222222e-12 * t) * t) * t) * t) * t) * t;
- }
- case 77: {
- T t = 2*y100 - 155;
- return 0.38722432730555448223e0 + (0.76260375162549802745e-2 + (0.85259785810004603848e-4 + (0.75329383305171327677e-6 + (0.52979361368388119355e-8 + (0.29352606054164086709e-10 + 0.12360253370666666667e-12 * t) * t) * t) * t) * t) * t;
- }
- case 78: {
- T t = 2*y100 - 157;
- return 0.40282355354616940667e0 + (0.79762880915029728079e-2 + (0.89909077342438246452e-4 + (0.79687137961956194579e-6 + (0.55989731807360403195e-8 + (0.30866246101464869050e-10 + 0.12868841946666666667e-12 * t) * t) * t) * t) * t) * t;
- }
- case 79: {
- T t = 2*y100 - 159;
- return 0.41914223158913787649e0 + (0.83456685186950463538e-2 + (0.94827181359250161335e-4 + (0.84291858561783141014e-6 + (0.59154537751083485684e-8 + (0.32441553034347469291e-10 + 0.13387957943111111111e-12 * t) * t) * t) * t) * t) * t;
- }
- case 80: {
- T t = 2*y100 - 161;
- return 0.43621971639463786896e0 + (0.87352841828289495773e-2 + (0.10002929142066799966e-3 + (0.89156148280219880024e-6 + (0.62480008150788597147e-8 + (0.34079760983458878910e-10 + 0.13917107176888888889e-12 * t) * t) * t) * t) * t) * t;
- }
- case 81: {
- T t = 2*y100 - 163;
- return 0.45409763548534330981e0 + (0.91463027755548240654e-2 + (0.10553137232446167258e-3 + (0.94293113464638623798e-6 + (0.65972492312219959885e-8 + (0.35782041795476563662e-10 + 0.14455745872000000000e-12 * t) * t) * t) * t) * t) * t;
- }
- case 82: {
- T t = 2*y100 - 165;
- return 0.47282001668512331468e0 + (0.95799574408860463394e-2 + (0.11135019058000067469e-3 + (0.99716373005509038080e-6 + (0.69638453369956970347e-8 + (0.37549499088161345850e-10 + 0.15003280712888888889e-12 * t) * t) * t) * t) * t) * t;
- }
- case 83: {
- T t = 2*y100 - 167;
- return 0.49243342227179841649e0 + (0.10037550043909497071e-1 + (0.11750334542845234952e-3 + (0.10544006716188967172e-5 + (0.73484461168242224872e-8 + (0.39383162326435752965e-10 + 0.15559069118222222222e-12 * t) * t) * t) * t) * t) * t;
- }
- case 84: {
- T t = 2*y100 - 169;
- return 0.51298708979209258326e0 + (0.10520454564612427224e-1 + (0.12400930037494996655e-3 + (0.11147886579371265246e-5 + (0.77517184550568711454e-8 + (0.41283980931872622611e-10 + 0.16122419680000000000e-12 * t) * t) * t) * t) * t) * t;
- }
- case 85: {
- T t = 2*y100 - 171;
- return 0.53453307979101369843e0 + (0.11030120618800726938e-1 + (0.13088741519572269581e-3 + (0.11784797595374515432e-5 + (0.81743383063044825400e-8 + (0.43252818449517081051e-10 + 0.16692592640000000000e-12 * t) * t) * t) * t) * t) * t;
- }
- case 86: {
- T t = 2*y100 - 173;
- return 0.55712643071169299478e0 + (0.11568077107929735233e-1 + (0.13815797838036651289e-3 + (0.12456314879260904558e-5 + (0.86169898078969313597e-8 + (0.45290446811539652525e-10 + 0.17268801084444444444e-12 * t) * t) * t) * t) * t) * t;
- }
- case 87: {
- T t = 2*y100 - 175;
- return 0.58082532122519320968e0 + (0.12135935999503877077e-1 + (0.14584223996665838559e-3 + (0.13164068573095710742e-5 + (0.90803643355106020163e-8 + (0.47397540713124619155e-10 + 0.17850211608888888889e-12 * t) * t) * t) * t) * t) * t;
- }
- case 88: {
- T t = 2*y100 - 177;
- return 0.60569124025293375554e0 + (0.12735396239525550361e-1 + (0.15396244472258863344e-3 + (0.13909744385382818253e-5 + (0.95651595032306228245e-8 + (0.49574672127669041550e-10 + 0.18435945564444444444e-12 * t) * t) * t) * t) * t) * t;
- }
- case 89: {
- T t = 2*y100 - 179;
- return 0.63178916494715716894e0 + (0.13368247798287030927e-1 + (0.16254186562762076141e-3 + (0.14695084048334056083e-5 + (0.10072078109604152350e-7 + (0.51822304995680707483e-10 + 0.19025081422222222222e-12 * t) * t) * t) * t) * t) * t;
- }
- case 90: {
- T t = 2*y100 - 181;
- return 0.65918774689725319200e0 + (0.14036375850601992063e-1 + (0.17160483760259706354e-3 + (0.15521885688723188371e-5 + (0.10601827031535280590e-7 + (0.54140790105837520499e-10 + 0.19616655146666666667e-12 * t) * t) * t) * t) * t) * t;
- }
- case 91: {
- T t = 2*y100 - 183;
- return 0.68795950683174433822e0 + (0.14741765091365869084e-1 + (0.18117679143520433835e-3 + (0.16392004108230585213e-5 + (0.11155116068018043001e-7 + (0.56530360194925690374e-10 + 0.20209663662222222222e-12 * t) * t) * t) * t) * t) * t;
- }
- case 92: {
- T t = 2*y100 - 185;
- return 0.71818103808729967036e0 + (0.15486504187117112279e-1 + (0.19128428784550923217e-3 + (0.17307350969359975848e-5 + (0.11732656736113607751e-7 + (0.58991125287563833603e-10 + 0.20803065333333333333e-12 * t) * t) * t) * t) * t) * t;
- }
- case 93: {
- T t = 2*y100 - 187;
- return 0.74993321911726254661e0 + (0.16272790364044783382e-1 + (0.20195505163377912645e-3 + (0.18269894883203346953e-5 + (0.12335161021630225535e-7 + (0.61523068312169087227e-10 + 0.21395783431111111111e-12 * t) * t) * t) * t) * t) * t;
- }
- case 94: {
- T t = 2*y100 - 189;
- return 0.78330143531283492729e0 + (0.17102934132652429240e-1 + (0.21321800585063327041e-3 + (0.19281661395543913713e-5 + (0.12963340087354341574e-7 + (0.64126040998066348872e-10 + 0.21986708942222222222e-12 * t) * t) * t) * t) * t) * t;
- }
- case 95: {
- T t = 2*y100 - 191;
- return 0.81837581041023811832e0 + (0.17979364149044223802e-1 + (0.22510330592753129006e-3 + (0.20344732868018175389e-5 + (0.13617902941839949718e-7 + (0.66799760083972474642e-10 + 0.22574701262222222222e-12 * t) * t) * t) * t) * t) * t;
- }
- case 96: {
- T t = 2*y100 - 193;
- return 0.85525144775685126237e0 + (0.18904632212547561026e-1 + (0.23764237370371255638e-3 + (0.21461248251306387979e-5 + (0.14299555071870523786e-7 + (0.69543803864694171934e-10 + 0.23158593688888888889e-12 * t) * t) * t) * t) * t) * t;
- }
- case 97: {
- T t = 2*y100 - 195;
- return 0.89402868170849933734e0 + (0.19881418399127202569e-1 + (0.25086793128395995798e-3 + (0.22633402747585233180e-5 + (0.15008997042116532283e-7 + (0.72357609075043941261e-10 + 0.23737194737777777778e-12 * t) * t) * t) * t) * t) * t;
- }
- case 98: {
- T t = 2*y100 - 197;
- return 0.93481333942870796363e0 + (0.20912536329780368893e-1 + (0.26481403465998477969e-3 + (0.23863447359754921676e-5 + (0.15746923065472184451e-7 + (0.75240468141720143653e-10 + 0.24309291271111111111e-12 * t) * t) * t) * t) * t) * t;
- }
- case 99: {
- T t = 2*y100 - 199;
- return 0.97771701335885035464e0 + (0.22000938572830479551e-1 + (0.27951610702682383001e-3 + (0.25153688325245314530e-5 + (0.16514019547822821453e-7 + (0.78191526829368231251e-10 + 0.24873652355555555556e-12 * t) * t) * t) * t) * t) * t;
- }
- }
- // we only get here if y = 1, i.e. |x| < 4*eps, in which case
- // erfcx is within 1e-15 of 1..
- return 1.0;
- }
- template <typename T>
- C10_HOST_DEVICE static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
- calc_erfcx(T x)
- {
- if (at::_isnan(x)) {
- return x;
- }
- if (x >= 0) {
- if (x > 50) { // continued-fraction expansion is faster
- const T ispi = 0.56418958354775628694807945156; // 1 / sqrt(pi)
- if (x > 5e7) { // 1-term expansion, important to avoid overflow
- return ispi / x;
- }
- /* 5-term expansion (rely on compiler for CSE), simplified from:
- ispi / (x+0.5/(x+1/(x+1.5/(x+2/x)))) */
- return ispi*((x*x) * (x*x+4.5) + 2) / (x * ((x*x) * (x*x+5) + 3.75));
- }
- return erfcx_y100(400/(4+x));
- }
- else {
- if (x < -26.7) {
- return std::numeric_limits<T>::infinity();
- }
- else if (x < -6.1) {
- return 2*exp(x*x);
- }
- else {
- return 2*exp(x*x) - erfcx_y100(400/(4-x));
- }
- }
- }
- /*
- * Logarithm of Gaussian cumulative distribution function.
- * This implementation of log_ndtr and its helper functions
- * follow SciPy's implementation
- * See NOTICE for the licenses.
- */
- template <typename T>
- static inline C10_HOST_DEVICE T calc_log_ndtr(T x) {
- T t = x * c10::frac_sqrt_2<T>;
- if (x < T{-1.0}) {
- return std::log(calc_erfcx(-t) / 2) - t * t;
- } else {
- return std::log1p(-std::erfc(t) / 2);
- }
- }
- template<typename T>
- static inline C10_HOST_DEVICE T airy_ai_forward(T x) {
- static const T AN[] = {
- +3.46538101525629032477e-01,
- +1.20075952739645805542e+01,
- +7.62796053615234516538e+01,
- +1.68089224934630576269e+02,
- +1.59756391350164413639e+02,
- +7.05360906840444183113e+01,
- +1.40264691163389668864e+01,
- +9.99999999999999995305e-01,
- };
- static const T AD[] = {
- +5.67594532638770212846e-01,
- +1.47562562584847203173e+01,
- +8.45138970141474626562e+01,
- +1.77318088145400459522e+02,
- +1.64234692871529701831e+02,
- +7.14778400825575695274e+01,
- +1.40959135607834029598e+01,
- +1.00000000000000000470e+00,
- };
- static const T AFN[] = {
- -1.31696323418331795333e-01,
- -6.26456544431912369773e-01,
- -6.93158036036933542233e-01,
- -2.79779981545119124951e-01,
- -4.91900132609500318020e-02,
- -4.06265923594885404393e-03,
- -1.59276496239262096340e-04,
- -2.77649108155232920844e-06,
- -1.67787698489114633780e-08,
- };
- static const T AFD[] = {
- +1.33560420706553243746e+01,
- +3.26825032795224613948e+01,
- +2.67367040941499554804e+01,
- +9.18707402907259625840e+00,
- +1.47529146771666414581e+00,
- +1.15687173795188044134e-01,
- +4.40291641615211203805e-03,
- +7.54720348287414296618e-05,
- +4.51850092970580378464e-07,
- };
- static const T AGN[] = {
- +1.97339932091685679179e-02,
- +3.91103029615688277255e-01,
- +1.06579897599595591108e+00,
- +9.39169229816650230044e-01,
- +3.51465656105547619242e-01,
- +6.33888919628925490927e-02,
- +5.85804113048388458567e-03,
- +2.82851600836737019778e-04,
- +6.98793669997260967291e-06,
- +8.11789239554389293311e-08,
- +3.41551784765923618484e-10,
- };
- static const T AGD[] = {
- +9.30892908077441974853e+00,
- +1.98352928718312140417e+01,
- +1.55646628932864612953e+01,
- +5.47686069422975497931e+00,
- +9.54293611618961883998e-01,
- +8.64580826352392193095e-02,
- +4.12656523824222607191e-03,
- +1.01259085116509135510e-04,
- +1.17166733214413521882e-06,
- +4.91834570062930015649e-09,
- };
- int domain_flag = 0;
- T ai;
- if (std::isinf(x)) {
- return std::numeric_limits<T>::quiet_NaN();
- }
- if (x > T(103.892)) {
- return T(0.0);
- }
- T f;
- T g;
- T k;
- if (x < T(-2.09)) {
- T z = T(1.0) / (T(-2.0) * x * std::sqrt(-x) / T(3.0));
- T afn = 0.0;
- for (uint8_t index = 0; index <= 8; index++) {
- afn = afn * (z * z) + AFN[index];
- }
- T afd = 0.0;
- for (uint8_t index = 0; index <= 8; index++) {
- afd = afd * (z * z) + AFD[index];
- }
- T agn = 0.0;
- for (uint8_t index = 0; index <= 10 + 0; index++) {
- agn = agn * (z * z) + AGN[index];
- }
- T agd = 0.0;
- for (uint8_t index = 0; index <= 10 - 1; index++) {
- agd = agd * (z * z) + AGD[index];
- }
- T t = T(-2.0) * x * std::sqrt(-x) / T(3.0) + T(0.25) * c10::pi<T>;
- return T(5.64189583547756286948e-01) / std::sqrt(std::sqrt(-x)) * (std::sin(t) * (T(1.0) + z * z * afn / afd) - std::cos(t) * (z * agn / agd));
- }
- if (x >= T(2.09)) {
- domain_flag = 5;
- T zeta = T(2.0) * x * std::sqrt(x) / T(3.0);
- T an = 0.0;
- for (uint8_t index = 0; index <= 7; index++) {
- an = an * (T(1.0) / zeta) + AN[index];
- }
- T ad = 0.0;
- for (uint8_t index = 0; index <= 7; index++) {
- ad = ad * (T(1.0) / zeta) + AD[index];
- }
- ai = T(5.64189583547756286948e-01) * (an / ad) / (T(2.0) * std::sqrt(std::sqrt(x)) * std::exp(zeta));
- if (x > T(8.3203353)) {
- return ai;
- }
- }
- f = 1.0;
- g = x;
- k = 1.0;
- T m = 1.0;
- T n = x;
- T t = 1.0;
- T z = x * x * x;
- while (t > std::numeric_limits<T>::epsilon()) {
- m *= z;
- k += T(1.0);
- m /= k;
- n *= z;
- k += T(1.0);
- n /= k;
- m /= k;
- f += m;
- k += T(1.0);
- n /= k;
- g += n;
- t = std::abs(m / f);
- }
- if ((domain_flag & 1) == 0) {
- return T(0.355028053887817239260) * f - T(0.258819403792806798405) * g;
- }
- return ai;
- } // T airy_ai(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T bessel_j0_forward(T x) {
- static const T PP[] = {
- +7.96936729297347051624e-04,
- +8.28352392107440799803e-02,
- +1.23953371646414299388e+00,
- +5.44725003058768775090e+00,
- +8.74716500199817011941e+00,
- +5.30324038235394892183e+00,
- +9.99999999999999997821e-01,
- };
- static const T PQ[] = {
- +9.24408810558863637013e-04,
- +8.56288474354474431428e-02,
- +1.25352743901058953537e+00,
- +5.47097740330417105182e+00,
- +8.76190883237069594232e+00,
- +5.30605288235394617618e+00,
- +1.00000000000000000218e+00,
- };
- static const T QP[] = {
- -1.13663838898469149931e-02,
- -1.28252718670509318512e+00,
- -1.95539544257735972385e+01,
- -9.32060152123768231369e+01,
- -1.77681167980488050595e+02,
- -1.47077505154951170175e+02,
- -5.14105326766599330220e+01,
- -6.05014350600728481186e+00,
- };
- static const T QQ[] = {
- +6.43178256118178023184e+01,
- +8.56430025976980587198e+02,
- +3.88240183605401609683e+03,
- +7.24046774195652478189e+03,
- +5.93072701187316984827e+03,
- +2.06209331660327847417e+03,
- +2.42005740240291393179e+02,
- };
- static const T RP[] = {
- -4.79443220978201773821e+09,
- +1.95617491946556577543e+12,
- -2.49248344360967716204e+14,
- +9.70862251047306323952e+15,
- };
- static const T RQ[] = {
- +4.99563147152651017219e+02,
- +1.73785401676374683123e+05,
- +4.84409658339962045305e+07,
- +1.11855537045356834862e+10,
- +2.11277520115489217587e+12,
- +3.10518229857422583814e+14,
- +3.18121955943204943306e+16,
- +1.71086294081043136091e+18,
- };
- if (x < T(0)) {
- x = -x;
- }
- if (x <= T(5.0)) {
- if (x < T(0.00001)) {
- return T(1.0) - x * x / T(4.0);
- }
- T rp = 0.0;
- for (uint8_t index = 0; index <= 3; index++) {
- rp = rp * (x * x) + RP[index];
- }
- T rq = 0.0;
- for (uint8_t index = 0; index <= 7; index++) {
- rq = rq * (x * x) + RQ[index];
- }
- return (x * x - T(5.78318596294678452118e+00)) * (x * x - T(3.04712623436620863991e+01)) * rp / rq;
- }
- T pp = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- pp = pp * (T(25.0) / (x * x)) + PP[index];
- }
- T pq = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- pq = pq * (T(25.0) / (x * x)) + PQ[index];
- }
- T qp = 0.0;
- for (uint8_t index = 0; index <= 7; index++) {
- qp = qp * (T(25.0) / (x * x)) + QP[index];
- }
- T qq = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- qq = qq * (T(25.0) / (x * x)) + QQ[index];
- }
- return (pp / pq * std::cos(x - T(0.785398163397448309615660845819875721)) - T(5.0) / x * (qp / qq) * std::sin(x - T(0.785398163397448309615660845819875721))) * T(0.797884560802865355879892119868763737) / std::sqrt(x);
- } // bessel_j0_forward(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T bessel_j1_forward(T x) {
- static const T PP[] = {
- +7.62125616208173112003e-04,
- +7.31397056940917570436e-02,
- +1.12719608129684925192e+00,
- +5.11207951146807644818e+00,
- +8.42404590141772420927e+00,
- +5.21451598682361504063e+00,
- +1.00000000000000000254e+00,
- };
- static const T PQ[] = {
- +5.71323128072548699714e-04,
- +6.88455908754495404082e-02,
- +1.10514232634061696926e+00,
- +5.07386386128601488557e+00,
- +8.39985554327604159757e+00,
- +5.20982848682361821619e+00,
- +9.99999999999999997461e-01,
- };
- static const T QP[] = {
- +5.10862594750176621635e-02,
- +4.98213872951233449420e+00,
- +7.58238284132545283818e+01,
- +3.66779609360150777800e+02,
- +7.10856304998926107277e+02,
- +5.97489612400613639965e+02,
- +2.11688757100572135698e+02,
- +2.52070205858023719784e+01,
- };
- static const T QQ[] = {
- +7.42373277035675149943e+01,
- +1.05644886038262816351e+03,
- +4.98641058337653607651e+03,
- +9.56231892404756170795e+03,
- +7.99704160447350683650e+03,
- +2.82619278517639096600e+03,
- +3.36093607810698293419e+02,
- };
- static const T RP[] = {
- -8.99971225705559398224e+08,
- +4.52228297998194034323e+11,
- -7.27494245221818276015e+13,
- +3.68295732863852883286e+15,
- };
- static const T RQ[] = {
- +6.20836478118054335476e+02,
- +2.56987256757748830383e+05,
- +8.35146791431949253037e+07,
- +2.21511595479792499675e+10,
- +4.74914122079991414898e+12,
- +7.84369607876235854894e+14,
- +8.95222336184627338078e+16,
- +5.32278620332680085395e+18,
- };
- if (x < T(0.0)) {
- return -bessel_j1_forward(-x);
- }
- if (x <= T(5.0)) {
- T rp = 0.0;
- for (uint8_t index = 0; index <= 3; index++) {
- rp = rp * (x * x) + RP[index];
- }
- T rq = 0.0;
- for (uint8_t index = 0; index <= 7; index++) {
- rq = rq * (x * x) + RQ[index];
- }
- return rp / rq * x * (x * x - T(1.46819706421238932572e+01)) * (x * x - T(4.92184563216946036703e+01));
- }
- T pp = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- pp = pp * (T(5.0) / x * (T(5.0) / x)) + PP[index];
- }
- T pq = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- pq = pq * (T(5.0) / x * (T(5.0) / x)) + PQ[index];
- }
- T qp = 0.0;
- for (uint8_t index = 0; index <= 7; index++) {
- qp = qp * (T(5.0) / x * (T(5.0) / x)) + QP[index];
- }
- T qq = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- qq = qq * (T(5.0) / x * (T(5.0) / x)) + QQ[index];
- }
- return (pp / pq * std::cos(x - T(2.356194490192344928846982537459627163)) - T(5.0) / x * (qp / qq) * std::sin(x - T(2.356194490192344928846982537459627163))) * T(0.797884560802865355879892119868763737) / std::sqrt(x);
- } // bessel_j1_forward(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T bessel_y0_forward(T x) {
- static const T PP[] = {
- +7.96936729297347051624e-04,
- +8.28352392107440799803e-02,
- +1.23953371646414299388e+00,
- +5.44725003058768775090e+00,
- +8.74716500199817011941e+00,
- +5.30324038235394892183e+00,
- +9.99999999999999997821e-01,
- };
- static const T PQ[] = {
- +9.24408810558863637013e-04,
- +8.56288474354474431428e-02,
- +1.25352743901058953537e+00,
- +5.47097740330417105182e+00,
- +8.76190883237069594232e+00,
- +5.30605288235394617618e+00,
- +1.00000000000000000218e+00,
- };
- static const T QP[] = {
- -1.13663838898469149931e-02,
- -1.28252718670509318512e+00,
- -1.95539544257735972385e+01,
- -9.32060152123768231369e+01,
- -1.77681167980488050595e+02,
- -1.47077505154951170175e+02,
- -5.14105326766599330220e+01,
- -6.05014350600728481186e+00,
- };
- static const T QQ[] = {
- +6.43178256118178023184e+01,
- +8.56430025976980587198e+02,
- +3.88240183605401609683e+03,
- +7.24046774195652478189e+03,
- +5.93072701187316984827e+03,
- +2.06209331660327847417e+03,
- +2.42005740240291393179e+02,
- };
- static const T YP[] = {
- +1.55924367855235737965e+04,
- -1.46639295903971606143e+07,
- +5.43526477051876500413e+09,
- -9.82136065717911466409e+11,
- +8.75906394395366999549e+13,
- -3.46628303384729719441e+15,
- +4.42733268572569800351e+16,
- -1.84950800436986690637e+16,
- };
- static const T YQ[] = {
- +1.04128353664259848412e+03,
- +6.26107330137134956842e+05,
- +2.68919633393814121987e+08,
- +8.64002487103935000337e+10,
- +2.02979612750105546709e+13,
- +3.17157752842975028269e+15,
- +2.50596256172653059228e+17,
- };
- if (x <= T(5.0)) {
- if (x == T(0.0)) {
- return -std::numeric_limits<T>::infinity();
- }
- if (x < T(0.0)) {
- return std::numeric_limits<T>::quiet_NaN();
- }
- T yp = 0.0;
- for (uint8_t index = 0; index <= 7; index++) {
- yp = yp * (x * x) + YP[index];
- }
- T yq = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- yq = yq * (x * x) + YQ[index];
- }
- return yp / yq + (T(0.636619772367581343075535053490057448) * std::log(x) * bessel_j0_forward(x));
- }
- T pp = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- pp = pp * (T(25.0) / (x * x)) + PP[index];
- }
- T pq = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- pq = pq * (T(25.0) / (x * x)) + PQ[index];
- }
- T qp = 0.0;
- for (uint8_t index = 0; index <= 7; index++) {
- qp = qp * (T(25.0) / (x * x)) + QP[index];
- }
- T qq = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- qq = qq * (T(25.0) / (x * x)) + QQ[index];
- }
- return (pp / pq * std::sin(x - T(0.785398163397448309615660845819875721)) + T(5.0) / x * (qp / qq) * std::cos(x - T(0.785398163397448309615660845819875721))) * T(0.797884560802865355879892119868763737) / std::sqrt(x);
- } // bessel_y0_forward(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T bessel_y1_forward(T x) {
- static const T PP[] = {
- +7.62125616208173112003e-04,
- +7.31397056940917570436e-02,
- +1.12719608129684925192e+00,
- +5.11207951146807644818e+00,
- +8.42404590141772420927e+00,
- +5.21451598682361504063e+00,
- +1.00000000000000000254e+00,
- };
- static const T PQ[] = {
- +5.71323128072548699714e-04,
- +6.88455908754495404082e-02,
- +1.10514232634061696926e+00,
- +5.07386386128601488557e+00,
- +8.39985554327604159757e+00,
- +5.20982848682361821619e+00,
- +9.99999999999999997461e-01,
- };
- static const T QP[] = {
- +5.10862594750176621635e-02,
- +4.98213872951233449420e+00,
- +7.58238284132545283818e+01,
- +3.66779609360150777800e+02,
- +7.10856304998926107277e+02,
- +5.97489612400613639965e+02,
- +2.11688757100572135698e+02,
- +2.52070205858023719784e+01,
- };
- static const T QQ[] = {
- +7.42373277035675149943e+01,
- +1.05644886038262816351e+03,
- +4.98641058337653607651e+03,
- +9.56231892404756170795e+03,
- +7.99704160447350683650e+03,
- +2.82619278517639096600e+03,
- +3.36093607810698293419e+02,
- };
- static const T YP[] = {
- +1.26320474790178026440e+09,
- -6.47355876379160291031e+11,
- +1.14509511541823727583e+14,
- -8.12770255501325109621e+15,
- +2.02439475713594898196e+17,
- -7.78877196265950026825e+17,
- };
- static const T YQ[] = {
- +5.94301592346128195359e+02,
- +2.35564092943068577943e+05,
- +7.34811944459721705660e+07,
- +1.87601316108706159478e+10,
- +3.88231277496238566008e+12,
- +6.20557727146953693363e+14,
- +6.87141087355300489866e+16,
- +3.97270608116560655612e+18,
- };
- if (x <= T(5.0)) {
- if (x == T(0.0)) {
- return -std::numeric_limits<T>::infinity();
- }
- if (x <= T(0.0)) {
- return std::numeric_limits<T>::quiet_NaN();
- }
- T yp = 0.0;
- for (uint8_t index = 0; index <= 5; index++) {
- yp = yp * (x * x) + YP[index];
- }
- T yq = 0.0;
- for (uint8_t index = 0; index <= 7; index++) {
- yq = yq * (x * x) + YQ[index];
- }
- return x * (yp / yq) + (T(0.636619772367581343075535053490057448) * (bessel_j1_forward(x) * std::log(x) - T(1.0) / x));
- }
- T pp = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- pp = pp * (T(5.0) / x * (T(5.0) / x)) + PP[index];
- }
- T pq = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- pq = pq * (T(5.0) / x * (T(5.0) / x)) + PQ[index];
- }
- T qp = 0.0;
- for (uint8_t index = 0; index <= 7; index++) {
- qp = qp * (T(5.0) / x * (T(5.0) / x)) + QP[index];
- }
- T qq = 0.0;
- for (uint8_t index = 0; index <= 6; index++) {
- qq = qq * (T(5.0) / x * (T(5.0) / x)) + QQ[index];
- }
- return (pp / pq * std::sin(x - T(2.356194490192344928846982537459627163)) + T(5.0) / x * (qp / qq) * std::cos(x - T(2.356194490192344928846982537459627163))) * T(0.797884560802865355879892119868763737) / std::sqrt(x);
- } // bessel_y1_forward(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T chebyshev_polynomial_t_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (std::abs(x) == T(1.0)) {
- if (x > T(0.0) || n % 2 == 0) {
- return T(1.0);
- }
- return T(-1.0);
- }
- if ((n > 6) && (std::abs(x) < T(1.0))) {
- return std::cos(n * std::acos(x));
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x;
- }
- T p = T(1.0);
- T q = x;
- T r;
- for (int64_t k = 2; k <= n; k++) {
- r = (x + x) * q - p;
- p = q;
- q = r;
- }
- return r;
- } // chebyshev_polynomial_t_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T chebyshev_polynomial_t_forward(T x, T n) {
- return chebyshev_polynomial_t_forward(x, static_cast<int64_t>(n));
- } // chebyshev_polynomial_t_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T chebyshev_polynomial_u_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (std::abs(x) == T(1.0)) {
- if (x > T(0.0) || n % 2 == 0) {
- return n + 1;
- }
- return -(n + 1);
- }
- if ((n > 8) && (std::abs(x) < T(1.0))) {
- if (std::sin(std::acos(x)) != T(0.0)) {
- return std::sin((n + 1) * std::acos(x)) / std::sin(std::acos(x));
- }
- return (n + 1) * std::cos((n + 1) * std::acos(x)) / x;
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x + x;
- }
- T p = T(1.0);
- T q = x + x;
- T r;
- for (int64_t k = 2; k <= n; k++) {
- r = (x + x) * q - p;
- p = q;
- q = r;
- }
- return r;
- } // chebyshev_polynomial_u_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T chebyshev_polynomial_u_forward(T x, T n) {
- return chebyshev_polynomial_u_forward(x, static_cast<int64_t>(n));
- } // chebyshev_polynomial_u_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T chebyshev_polynomial_v_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (std::abs(x) == T(1.0)) {
- if (x > T(0.0)) {
- return T(1.0);
- }
- if (n % 2 == 0) {
- return n + n + 1;
- }
- return -(n + n + 1);
- }
- if ((n > 8) && (std::abs(x) < T(1.0))) {
- if (std::sin(std::acos(x) / T(2.0)) != T(1.0)) {
- return std::cos((n + T(0.5)) * std::acos(x)) / std::cos(std::acos(x) / T(2.0));
- }
- if (n % 2 == 0) {
- return n + n + 1;
- }
- return -(n + n + 1);
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x + x - T(1.0);
- }
- T p = T(1.0);
- T q = x + x - T(1.0);
- T r;
- for (int64_t k = 2; k <= n; k++) {
- r = (x + x) * q - p;
- p = q;
- q = r;
- }
- return r;
- } // chebyshev_polynomial_v_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T chebyshev_polynomial_v_forward(T x, T n) {
- return chebyshev_polynomial_v_forward(x, static_cast<int64_t>(n));
- } // chebyshev_polynomial_v_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T chebyshev_polynomial_w_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (std::abs(x) == T(1.0)) {
- if (x > T(0.0)) {
- return n + n + 1;
- }
- if (n % 2 == 0) {
- return T(1.0);
- }
- return T(-1.0);
- }
- if ((n > 8) && (std::abs(x) < T(1.0))) {
- if (std::cos(std::acos(x) / T(2.0)) != T(1.0)) {
- return std::sin((n + T(0.5)) * std::acos(x)) / std::sin(std::acos(x) / T(2.0));
- }
- if (x > T(0.0)) {
- return n + n + 1;
- }
- if (n % 2 == 0) {
- return T(1.0);
- }
- return T(-1.0);
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x + x + T(1.0);
- }
- T p = T(1.0);
- T q = x + x + T(1.0);
- T r;
- for (int64_t k = 2; k <= n; k++) {
- r = (x + x) * q - p;
- p = q;
- q = r;
- }
- return r;
- } // chebyshev_polynomial_w_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T chebyshev_polynomial_w_forward(T x, T n) {
- return chebyshev_polynomial_w_forward(x, static_cast<int64_t>(n));
- } // chebyshev_polynomial_w_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T hermite_polynomial_h_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x + x;
- }
- T p = T(1.0);
- T q = x + x;
- T r;
- for (int64_t k = 2; k < n + n; k += 2) {
- r = (x + x) * q - k * p;
- p = q;
- q = r;
- }
- return r;
- } // hermite_polynomial_h_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T hermite_polynomial_h_forward(T x, T n) {
- return hermite_polynomial_h_forward(x, static_cast<int64_t>(n));
- } // hermite_polynomial_h_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T hermite_polynomial_he_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x;
- }
- T p = T(1.0);
- T q = x;
- T r;
- for (int64_t k = 1; k < n; k++) {
- r = x * q - k * p;
- p = q;
- q = r;
- }
- return r;
- } // hermite_polynomial_he_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T hermite_polynomial_he_forward(T x, T n) {
- return hermite_polynomial_he_forward(x, static_cast<int64_t>(n));
- } // hermite_polynomial_he_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T laguerre_polynomial_l_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (std::abs(x) == T(0.0)) {
- return T(1.0);
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return T(1.0) - x;
- }
- T p = T(1.0);
- T q = T(1.0) - x;
- T r;
- for (int64_t k = 1; k < n; k++) {
- r = (((k + k) + (T(1.0) - x)) * q - k * p) / (k + 1);
- p = q;
- q = r;
- }
- return r;
- } // laguerre_polynomial_l_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T laguerre_polynomial_l_forward(T x, T n) {
- return laguerre_polynomial_l_forward(x, static_cast<int64_t>(n));
- } // laguerre_polynomial_l_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T legendre_polynomial_p_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (std::abs(x) == T(1.0)) {
- if (x > T(0.0) || n % 2 == 0) {
- return T(1.0);
- }
- return T(-1.0);
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x;
- }
- T p = T(1.0);
- T q = x;
- T r;
- for (int64_t k = 1; k < n; k++) {
- r = ((k + k + 1) * x * q - k * p) / (k + 1);
- p = q;
- q = r;
- }
- return r;
- } // legendre_polynomial_p_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T legendre_polynomial_p_forward(T x, T n) {
- return legendre_polynomial_p_forward(x, static_cast<int64_t>(n));
- } // legendre_polynomial_p_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T modified_bessel_i0_forward(T x) {
- static const T A[] = {
- -4.41534164647933937950e-18,
- +3.33079451882223809783e-17,
- -2.43127984654795469359e-16,
- +1.71539128555513303061e-15,
- -1.16853328779934516808e-14,
- +7.67618549860493561688e-14,
- -4.85644678311192946090e-13,
- +2.95505266312963983461e-12,
- -1.72682629144155570723e-11,
- +9.67580903537323691224e-11,
- -5.18979560163526290666e-10,
- +2.65982372468238665035e-09,
- -1.30002500998624804212e-08,
- +6.04699502254191894932e-08,
- -2.67079385394061173391e-07,
- +1.11738753912010371815e-06,
- -4.41673835845875056359e-06,
- +1.64484480707288970893e-05,
- -5.75419501008210370398e-05,
- +1.88502885095841655729e-04,
- -5.76375574538582365885e-04,
- +1.63947561694133579842e-03,
- -4.32430999505057594430e-03,
- +1.05464603945949983183e-02,
- -2.37374148058994688156e-02,
- +4.93052842396707084878e-02,
- -9.49010970480476444210e-02,
- +1.71620901522208775349e-01,
- -3.04682672343198398683e-01,
- +6.76795274409476084995e-01,
- };
- static const T B[] = {
- -7.23318048787475395456e-18,
- -4.83050448594418207126e-18,
- +4.46562142029675999901e-17,
- +3.46122286769746109310e-17,
- -2.82762398051658348494e-16,
- -3.42548561967721913462e-16,
- +1.77256013305652638360e-15,
- +3.81168066935262242075e-15,
- -9.55484669882830764870e-15,
- -4.15056934728722208663e-14,
- +1.54008621752140982691e-14,
- +3.85277838274214270114e-13,
- +7.18012445138366623367e-13,
- -1.79417853150680611778e-12,
- -1.32158118404477131188e-11,
- -3.14991652796324136454e-11,
- +1.18891471078464383424e-11,
- +4.94060238822496958910e-10,
- +3.39623202570838634515e-09,
- +2.26666899049817806459e-08,
- +2.04891858946906374183e-07,
- +2.89137052083475648297e-06,
- +6.88975834691682398426e-05,
- +3.36911647825569408990e-03,
- +8.04490411014108831608e-01,
- };
- T p;
- T q = 0.0;
- if (std::abs(x) <= T(8.0)) {
- T a = A[0];
- for (uint8_t index = 1; index < 30; index++) {
- p = q;
- q = a;
- a = ((std::abs(x) / T(2.0)) - T(2.0)) * q - p + A[index];
- }
- return std::exp(std::abs(x)) * (T(0.5) * (a - p));
- }
- T b = B[0];
- for (uint8_t index = 1; index < 25; index++) {
- p = q;
- q = b;
- b = (T(32.0) / std::abs(x) - T(2.0)) * q - p + B[index];
- }
- return std::exp(std::abs(x)) * (T(0.5) * (b - p)) / std::sqrt(std::abs(x));
- } // modified_bessel_i0_forward(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T modified_bessel_i1_forward(T x) {
- static const T A[] = {
- +2.77791411276104639959e-18,
- -2.11142121435816608115e-17,
- +1.55363195773620046921e-16,
- -1.10559694773538630805e-15,
- +7.60068429473540693410e-15,
- -5.04218550472791168711e-14,
- +3.22379336594557470981e-13,
- -1.98397439776494371520e-12,
- +1.17361862988909016308e-11,
- -6.66348972350202774223e-11,
- +3.62559028155211703701e-10,
- -1.88724975172282928790e-09,
- +9.38153738649577178388e-09,
- -4.44505912879632808065e-08,
- +2.00329475355213526229e-07,
- -8.56872026469545474066e-07,
- +3.47025130813767847674e-06,
- -1.32731636560394358279e-05,
- +4.78156510755005422638e-05,
- -1.61760815825896745588e-04,
- +5.12285956168575772895e-04,
- -1.51357245063125314899e-03,
- +4.15642294431288815669e-03,
- -1.05640848946261981558e-02,
- +2.47264490306265168283e-02,
- -5.29459812080949914269e-02,
- +1.02643658689847095384e-01,
- -1.76416518357834055153e-01,
- +2.52587186443633654823e-01,
- };
- static const T B[] = {
- +7.51729631084210481353e-18,
- +4.41434832307170791151e-18,
- -4.65030536848935832153e-17,
- -3.20952592199342395980e-17,
- +2.96262899764595013876e-16,
- +3.30820231092092828324e-16,
- -1.88035477551078244854e-15,
- -3.81440307243700780478e-15,
- +1.04202769841288027642e-14,
- +4.27244001671195135429e-14,
- -2.10154184277266431302e-14,
- -4.08355111109219731823e-13,
- -7.19855177624590851209e-13,
- +2.03562854414708950722e-12,
- +1.41258074366137813316e-11,
- +3.25260358301548823856e-11,
- -1.89749581235054123450e-11,
- -5.58974346219658380687e-10,
- -3.83538038596423702205e-09,
- -2.63146884688951950684e-08,
- -2.51223623787020892529e-07,
- -3.88256480887769039346e-06,
- -1.10588938762623716291e-04,
- -9.76109749136146840777e-03,
- +7.78576235018280120474e-01,
- };
- T p;
- T q = 0.0;
- if (std::abs(x) <= T(8.0)) {
- T a = A[0];
- for (uint8_t index = 1; index < 29; index++) {
- p = q;
- q = a;
- a = ((std::abs(x) / T(2.0)) - T(2.0)) * q - p + A[index];
- }
- if (x < T(0.0)) {
- return -(T(0.5) * (a - p) * std::abs(x) * std::exp(std::abs(x)));
- }
- return T(0.5) * (a - p) * std::abs(x) * std::exp(std::abs(x));
- }
- T b = B[0];
- for (uint8_t index = 1; index < 25; index++) {
- p = q;
- q = b;
- b = (T(32.0) / std::abs(x) - T(2.0)) * q - p + B[index];
- }
- if (x < T(0.0)) {
- return -(std::exp(std::abs(x)) * (T(0.5) * (b - p)) / std::sqrt(std::abs(x)));
- }
- return std::exp(std::abs(x)) * (T(0.5) * (b - p)) / std::sqrt(std::abs(x));
- } // modified_bessel_i1_forward(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T modified_bessel_k0_forward(T x) {
- static const T A[] = {
- +1.37446543561352307156e-16,
- +4.25981614279661018399e-14,
- +1.03496952576338420167e-11,
- +1.90451637722020886025e-09,
- +2.53479107902614945675e-07,
- +2.28621210311945178607e-05,
- +1.26461541144692592338e-03,
- +3.59799365153615016266e-02,
- +3.44289899924628486886e-01,
- -5.35327393233902768720e-01,
- };
- static const T B[] = {
- +5.30043377268626276149e-18,
- -1.64758043015242134646e-17,
- +5.21039150503902756861e-17,
- -1.67823109680541210385e-16,
- +5.51205597852431940784e-16,
- -1.84859337734377901440e-15,
- +6.34007647740507060557e-15,
- -2.22751332699166985548e-14,
- +8.03289077536357521100e-14,
- -2.98009692317273043925e-13,
- +1.14034058820847496303e-12,
- -4.51459788337394416547e-12,
- +1.85594911495471785253e-11,
- -7.95748924447710747776e-11,
- +3.57739728140030116597e-10,
- -1.69753450938905987466e-09,
- +8.57403401741422608519e-09,
- -4.66048989768794782956e-08,
- +2.76681363944501510342e-07,
- -1.83175552271911948767e-06,
- +1.39498137188764993662e-05,
- -1.28495495816278026384e-04,
- +1.56988388573005337491e-03,
- -3.14481013119645005427e-02,
- +2.44030308206595545468e+00,
- };
- if (x == T(0.0)) {
- return std::numeric_limits<T>::infinity();
- }
- if (x < T(0.0)) {
- return std::numeric_limits<T>::quiet_NaN();
- }
- T p;
- T q = 0.0;
- if (x <= T(2.0)) {
- T a = A[0];
- for (uint8_t index = 1; index < 10; index++) {
- p = q;
- q = a;
- a = (x * x - T(2.0)) * q - p + A[index];
- }
- return T(0.5) * (a - p) - std::log(0.5 * x) * modified_bessel_i0_forward(x);
- }
- T b = B[0];
- for (uint8_t index = 1; index < 25; index++) {
- p = q;
- q = b;
- b = (T(8.0) / x - T(2.0)) * q - p + B[index];
- }
- return std::exp(-x) * (T(0.5) * (b - p)) / std::sqrt(x);
- } // modified_bessel_k0_forward(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T modified_bessel_k1_forward(T x) {
- static const T A[] = {
- -7.02386347938628759343e-18,
- -2.42744985051936593393e-15,
- -6.66690169419932900609e-13,
- -1.41148839263352776110e-10,
- -2.21338763073472585583e-08,
- -2.43340614156596823496e-06,
- -1.73028895751305206302e-04,
- -6.97572385963986435018e-03,
- -1.22611180822657148235e-01,
- -3.53155960776544875667e-01,
- +1.52530022733894777053e+00,
- };
- static const T B[] = {
- -5.75674448366501715755e-18,
- +1.79405087314755922667e-17,
- -5.68946255844285935196e-17,
- +1.83809354436663880070e-16,
- -6.05704724837331885336e-16,
- +2.03870316562433424052e-15,
- -7.01983709041831346144e-15,
- +2.47715442448130437068e-14,
- -8.97670518232499435011e-14,
- +3.34841966607842919884e-13,
- -1.28917396095102890680e-12,
- +5.13963967348173025100e-12,
- -2.12996783842756842877e-11,
- +9.21831518760500529508e-11,
- -4.19035475934189648750e-10,
- +2.01504975519703286596e-09,
- -1.03457624656780970260e-08,
- +5.74108412545004946722e-08,
- -3.50196060308781257119e-07,
- +2.40648494783721712015e-06,
- -1.93619797416608296024e-05,
- +1.95215518471351631108e-04,
- -2.85781685962277938680e-03,
- +1.03923736576817238437e-01,
- +2.72062619048444266945e+00,
- };
- if (x == T(0.0)) {
- return std::numeric_limits<T>::infinity();
- }
- if (x < T(0.0)) {
- return std::numeric_limits<T>::quiet_NaN();
- }
- T p;
- T q = 0.0;
- if (x <= T(2.0)) {
- T a = A[0];
- for (uint8_t index = 1; index < 11; index++) {
- p = q;
- q = a;
- a = (x * x - T(2.0)) * q - p + A[index];
- }
- return std::log(T(0.5) * x) * modified_bessel_i1_forward(x) + T(0.5) * (a - p) / x;
- }
- T b = B[0];
- for (uint8_t index = 1; index < 25; index++) {
- p = q;
- q = b;
- b = (T(8.0) / x - T(2.0)) * q - p + B[index];
- }
- return std::exp(-x) * (T(0.5) * (b - p)) / std::sqrt(x);
- } // modified_bessel_k1_forward(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T scaled_modified_bessel_k0_forward(T x) {
- static const T A[] = {
- +1.37446543561352307156e-16,
- +4.25981614279661018399e-14,
- +1.03496952576338420167e-11,
- +1.90451637722020886025e-09,
- +2.53479107902614945675e-07,
- +2.28621210311945178607e-05,
- +1.26461541144692592338e-03,
- +3.59799365153615016266e-02,
- +3.44289899924628486886e-01,
- -5.35327393233902768720e-01,
- };
- static const T B[] = {
- +5.30043377268626276149e-18,
- -1.64758043015242134646e-17,
- +5.21039150503902756861e-17,
- -1.67823109680541210385e-16,
- +5.51205597852431940784e-16,
- -1.84859337734377901440e-15,
- +6.34007647740507060557e-15,
- -2.22751332699166985548e-14,
- +8.03289077536357521100e-14,
- -2.98009692317273043925e-13,
- +1.14034058820847496303e-12,
- -4.51459788337394416547e-12,
- +1.85594911495471785253e-11,
- -7.95748924447710747776e-11,
- +3.57739728140030116597e-10,
- -1.69753450938905987466e-09,
- +8.57403401741422608519e-09,
- -4.66048989768794782956e-08,
- +2.76681363944501510342e-07,
- -1.83175552271911948767e-06,
- +1.39498137188764993662e-05,
- -1.28495495816278026384e-04,
- +1.56988388573005337491e-03,
- -3.14481013119645005427e-02,
- +2.44030308206595545468e+00,
- };
- if (x == T(0.0)) {
- return std::numeric_limits<T>::infinity();
- }
- if (x < T(0.0)) {
- return std::numeric_limits<T>::quiet_NaN();
- }
- T p;
- T q = 0.0;
- if (x <= T(2.0)) {
- T a = A[0];
- for (uint64_t index = 1; index < 10; index++) {
- p = q;
- q = a;
- a = (x * x - T(2.0)) * q - p + A[index];
- }
- return (T(0.5) * (a - p) - std::log(T(0.5) * x) * modified_bessel_i0_forward(x)) * std::exp(x);
- }
- T b = B[0];
- for (uint64_t index = 1; index < 25; index++) {
- p = q;
- q = b;
- b = (T(8.0) / x - T(2.0)) * q - p + B[index];
- }
- return T(0.5) * (b - p) / std::sqrt(x);
- } // T scaled_modified_bessel_k0_forward(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T scaled_modified_bessel_k1_forward(T x) {
- static const T A[] = {
- -7.02386347938628759343e-18,
- -2.42744985051936593393e-15,
- -6.66690169419932900609e-13,
- -1.41148839263352776110e-10,
- -2.21338763073472585583e-08,
- -2.43340614156596823496e-06,
- -1.73028895751305206302e-04,
- -6.97572385963986435018e-03,
- -1.22611180822657148235e-01,
- -3.53155960776544875667e-01,
- +1.52530022733894777053e+00,
- };
- static const T B[] = {
- -5.75674448366501715755e-18,
- +1.79405087314755922667e-17,
- -5.68946255844285935196e-17,
- +1.83809354436663880070e-16,
- -6.05704724837331885336e-16,
- +2.03870316562433424052e-15,
- -7.01983709041831346144e-15,
- +2.47715442448130437068e-14,
- -8.97670518232499435011e-14,
- +3.34841966607842919884e-13,
- -1.28917396095102890680e-12,
- +5.13963967348173025100e-12,
- -2.12996783842756842877e-11,
- +9.21831518760500529508e-11,
- -4.19035475934189648750e-10,
- +2.01504975519703286596e-09,
- -1.03457624656780970260e-08,
- +5.74108412545004946722e-08,
- -3.50196060308781257119e-07,
- +2.40648494783721712015e-06,
- -1.93619797416608296024e-05,
- +1.95215518471351631108e-04,
- -2.85781685962277938680e-03,
- +1.03923736576817238437e-01,
- +2.72062619048444266945e+00,
- };
- if (x == T(0.0)) {
- return std::numeric_limits<T>::infinity();
- }
- if (x < T(0.0)) {
- return std::numeric_limits<T>::quiet_NaN();
- }
- T p;
- T q = 0.0;
- if (x <= T(2.0)) {
- T a = A[0];
- for (uint64_t index = 1; index < 11; index++) {
- p = q;
- q = a;
- a = (x * x - T(2.0)) * q - p + A[index];
- }
- return (std::log(T(0.5) * x) * modified_bessel_i1_forward(x) + T(0.5) * (a - p) / x) * std::exp(x);
- }
- T b = B[0];
- for (uint64_t index = 1; index < 25; index++) {
- p = q;
- q = b;
- b = (T(8.0) / x - T(2.0)) * q - p + B[index];
- }
- return (T(0.5) * (b - p) / std::sqrt(x));
- } // T scaled_modified_bessel_k1_forward(T x)
- template<typename T>
- static inline C10_HOST_DEVICE T shifted_chebyshev_polynomial_t_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (x == T(1.0)) {
- return T(1.0);
- }
- if (x == T(0.0)) {
- if (n % 2 == 0) {
- return T(1.0);
- }
- return T(-1.0);
- }
- if ((n > 6) && (std::abs(x + x - T(1.0)) < T(1.0))) {
- return std::cos(n * std::acos(x + x - T(1.0)));
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x + x - T(1.0);
- }
- T p = T(1.0);
- T q = x + x - T(1.0);
- T r;
- for (int64_t k = 2; k <= n; k++) {
- r = (x + x - T(1.0) + (x + x - T(1.0))) * q - p;
- p = q;
- q = r;
- }
- return r;
- } // shifted_chebyshev_polynomial_t_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T shifted_chebyshev_polynomial_t_forward(T x, T n) {
- return shifted_chebyshev_polynomial_t_forward(x, static_cast<int64_t>(n));
- } // shifted_chebyshev_polynomial_t_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T shifted_chebyshev_polynomial_u_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (x == T(1.0)) {
- return n + 1;
- }
- if (x == T(0.0)) {
- if (n % 2 == 0) {
- return n + 1;
- }
- return -(n + 1);
- }
- if ((n > 6) && (std::abs(x + x - T(1.0)) < T(1.0))) {
- if (std::sin(std::acos(x + x - T(1.0))) != T(0.0)) {
- return std::sin((n + 1) * std::acos(x + x - T(1.0))) / std::sin(std::acos(x + x - T(1.0)));
- }
- return (n + 1) * std::cos((n + 1) * std::acos(x + x - T(1.0))) / (x + x - T(1.0));
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x + x - T(1.0) + (x + x - T(1.0));
- }
- T p = T(1.0);
- T q = x + x - T(1.0) + (x + x - T(1.0));
- T r;
- for (int64_t k = 2; k <= n; k++) {
- r = (x + x - T(1.0) + (x + x - T(1.0))) * q - p;
- p = q;
- q = r;
- }
- return r;
- } // shifted_chebyshev_polynomial_u_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T shifted_chebyshev_polynomial_u_forward(T x, T n) {
- return shifted_chebyshev_polynomial_u_forward(x, static_cast<int64_t>(n));
- } // shifted_chebyshev_polynomial_u_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T shifted_chebyshev_polynomial_v_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (x == T(1.0)) {
- return T(1.0);
- }
- if (x == T(0.0)) {
- if (n % 2 == 0) {
- return (n + n + 1);
- }
- return -(n + n + 1);
- }
- if ((n > 6) && (std::abs(x + x - T(1.0)) < T(1.0))) {
- if (std::sin(std::acos(x + x - T(1.0)) / T(2.0)) != T(1.0)) {
- return std::cos(((n) + T(0.5)) * std::acos(x + x - T(1.0))) / std::cos(std::acos(x + x - T(1.0)) / T(2.0));
- }
- if (n % 2 == 0) {
- return n + n + 1;
- }
- return -(n + n + 1);
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x + x - T(1.0) + (x + x - T(1.0)) - T(1.0);
- }
- T p = T(1.0);
- T q = x + x - T(1.0) + (x + x - T(1.0)) - T(1.0);
- T r;
- for (int64_t k = 2; k <= n; k++) {
- r = (x + x - T(1.0) + (x + x - T(1.0))) * q - p;
- p = q;
- q = r;
- }
- return r;
- } // shifted_chebyshev_polynomial_v_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T shifted_chebyshev_polynomial_v_forward(T x, T n) {
- return shifted_chebyshev_polynomial_v_forward(x, static_cast<int64_t>(n));
- } // shifted_chebyshev_polynomial_v_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T shifted_chebyshev_polynomial_w_forward(T x, int64_t n) {
- if (n < 0) {
- return T(0.0);
- }
- if (x == T(1.0)) {
- return n + n + 1;
- }
- if (x == T(0.0)) {
- if (n % 2 == 0) {
- return T(1.0);
- }
- return T(-1.0);
- }
- if ((n > 4) && (std::abs(x + x - T(1.0)) < T(1.0))) {
- if (std::cos(std::acos(x + x - T(1.0)) / T(2.0)) != T(1.0)) {
- return std::sin((n + T(0.5)) * std::acos(x + x - T(1.0))) / std::sin(std::acos(x + x - T(1.0)) / T(2.0));
- }
- if (n % 2 == 0) {
- return T(1.0);
- }
- return T(-1.0);
- }
- if (n == 0) {
- return T(1.0);
- }
- if (n == 1) {
- return x + x - T(1.0) + (x + x - T(1.0)) + T(1.0);
- }
- T p = T(1.0);
- T q = x + x - T(1.0) + (x + x - T(1.0)) + T(1.0);
- T r;
- for (int64_t k = 2; k <= n; k++) {
- r = (x + x - T(1.0) + (x + x - T(1.0))) * q - p;
- p = q;
- q = r;
- }
- return r;
- } // shifted_chebyshev_polynomial_w_forward(T x, int64_t n)
- template<typename T, bool is_cuda=false>
- static inline C10_HOST_DEVICE T shifted_chebyshev_polynomial_w_forward(T x, T n) {
- return shifted_chebyshev_polynomial_w_forward(x, static_cast<int64_t>(n));
- } // shifted_chebyshev_polynomial_w_forward(T x, T n)
- template<typename T>
- static inline C10_HOST_DEVICE T spherical_bessel_j0_forward(T x) {
- if (std::isinf(x)) {
- return T(0.0);
- }
- if (std::abs(x) < T(0.5)) {
- return T(1.0) + x * x * (T(-1.0) / T(6.0) + x * x * (T(1.0) / T(120.0) + x * x * (T(-1.0) / T(5040.0) + x * x * (T(1.0) / T(362880.0) + x * x * (T(-1.0) / T(39916800.0) + x * x * (T(1.0) / T(6227020800.0)))))));
- }
- return std::sin(x) / x;
- } // T spherical_bessel_j0_forward(T x)
- C10_CLANG_DIAGNOSTIC_POP()
|