123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- #pragma once
- #include <ATen/native/DispatchStub.h>
- #include <ATen/OpMathType.h>
- #include <ATen/TensorIterator.h>
- #include <c10/core/Scalar.h>
- namespace at {
- namespace native {
- template <typename scalar_t>
- C10_HOST_DEVICE C10_ALWAYS_INLINE bool is_lerp_weight_small(scalar_t weight) {
- return std::abs(weight) < scalar_t(0.5);
- }
- template <typename scalar_t>
- C10_HOST_DEVICE C10_ALWAYS_INLINE bool is_lerp_weight_small(c10::complex<scalar_t> weight) {
- // Avoid the sqrt in abs(weight)
- return (weight.real() * weight.real() + weight.imag() * weight.imag()) < scalar_t(0.25);
- }
- template <typename scalar_t, typename weight_t>
- C10_HOST_DEVICE C10_ALWAYS_INLINE scalar_t lerp(scalar_t self_, scalar_t end_, weight_t weight_) {
- using opmath_t = at::opmath_type<scalar_t>;
- using opmath_weight_t = at::opmath_type<weight_t>;
- opmath_t self = self_;
- opmath_t end = end_;
- opmath_weight_t weight = weight_;
- // Conditional for better numeric. This has been discussed in
- // https://github.com/pytorch/pytorch/pull/18871
- return is_lerp_weight_small(weight)
- ? self + weight * (end - self)
- : end - (end - self) * (opmath_t(1) - weight);
- }
- using lerp_fn_scalar = void (*)(
- at::TensorIteratorBase& iter,
- const Scalar& weight);
- using lerp_fn_tensor = void (*)(
- at::TensorIteratorBase& iter);
- DECLARE_DISPATCH(lerp_fn_scalar, lerp_kernel_scalar_weight);
- DECLARE_DISPATCH(lerp_fn_tensor, lerp_kernel_tensor_weight);
- } // namespace native
- } // namespace at
|