123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518 |
- #pragma once
- #include <ATen/native/Math.h>
- #include <c10/macros/Macros.h>
- #include <c10/util/MathConstants.h>
- // ROCM hcc doesn't work well with using std:: in kernel functions
- #if defined(__CUDA_ARCH__)
- #include <c10/cuda/CUDAMathCompat.h>
- #define compat_exp c10::cuda::compat::exp
- #define compat_ceil c10::cuda::compat::ceil
- #define compat_floor c10::cuda::compat::floor
- #define compat_log c10::cuda::compat::log
- #define compat_pow c10::cuda::compat::pow
- #define compat_sqrt c10::cuda::compat::sqrt
- #define compat_tan c10::cuda::compat::tan
- #define compat_abs c10::cuda::compat::abs
- #define compat_log1p c10::cuda::compat::log1p
- #elif defined(__HIPCC__)
- #include <c10/hip/HIPMathCompat.h>
- #define compat_exp c10::hip::compat::exp
- #define compat_ceil c10::hip::compat::ceil
- #define compat_floor c10::hip::compat::floor
- #define compat_log c10::hip::compat::log
- #define compat_pow c10::hip::compat::pow
- #define compat_sqrt c10::hip::compat::sqrt
- #define compat_tan c10::hip::compat::tan
- #define compat_abs c10::hip::compat::abs
- #define compat_log1p c10::hip::compat::log1p
- #else
- #define compat_exp std::exp
- #define compat_ceil std::ceil
- #define compat_floor std::floor
- #define compat_log std::log
- #define compat_pow std::pow
- #define compat_sqrt std::sqrt
- #define compat_tan std::tan
- #define compat_abs std::abs
- #define compat_log1p std::log1p
- #endif
- namespace {
- #if !defined(__CUDA_ARCH__) && !defined(__HIPCC__)
- // we cannot use std::isnan directly due to some incompatibility of
- // gcc constexpr'ing and nvcc
- using std::isnan;
- #endif
- // Here sampler_t should be function type scalar_t(void). For gpu
- // "sampler" is a device function, but since ROCM doesn't have
- // equivalent to nvstd::function, we use a template type parameter to
- // capture it.
- template<typename scalar_t, typename sampler_t>
- struct BaseSampler {
- sampler_t sampler;
- C10_DEVICE BaseSampler(const sampler_t& sampler): sampler(sampler) {}
- C10_DEVICE scalar_t sample() {
- return sampler();
- }
- };
- // The function `sample_gamma` is
- // is adapted from Numpy's distributions.c implementation.
- // It is MIT licensed, so here is the copyright:
- /* Copyright 2005 Robert Kern (robert.kern@gmail.com)
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the
- * "Software"), to deal in the Software without restriction, including
- * without limitation the rights to use, copy, modify, merge, publish,
- * distribute, sublicense, and/or sell copies of the Software, and to
- * permit persons to whom the Software is furnished to do so, subject to
- * the following conditions:
- *
- * The above copyright notice and this permission notice shall be included
- * in all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
- * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
- * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
- * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
- template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t, typename normal_sampler_t>
- C10_DEVICE scalar_t sample_gamma(scalar_t alpha, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform, BaseSampler<accscalar_t, normal_sampler_t>& standard_normal) {
- accscalar_t scale = 1.0f;
- // Boost alpha for higher acceptance probability.
- if (alpha < 1.0f) {
- if (alpha == 0.f) return 0.f;
- scale *= compat_pow(1 - standard_uniform.sample(), 1.0f / alpha);
- alpha += 1.0f;
- }
- // This implements the acceptance-rejection method of Marsaglia and Tsang (2000)
- // doi:10.1145/358407.358414
- const accscalar_t d = alpha - 1.0f / 3.0f;
- const accscalar_t c = 1.0f / compat_sqrt(9.0f * d);
- for (;;) {
- accscalar_t x, y;
- do {
- x = standard_normal.sample();
- y = 1.0f + c * x;
- } while (y <= 0);
- const accscalar_t v = y * y * y;
- const accscalar_t u = 1 - standard_uniform.sample();
- const accscalar_t xx = x * x;
- if (u < 1.0f - 0.0331f * xx * xx)
- return static_cast<scalar_t>(scale * d * v);
- if (compat_log(u) < 0.5f * xx + d * (1.0f - v + compat_log(v)))
- return static_cast<scalar_t>(scale * d * v);
- }
- }
- /* the functions stirling_approx_tail, binomial_inversion, and btrs are adapted
- * from TensorFlow's random_binomial_op.cc implementation. That code is under
- * copyright: 2019 The TensorFlow Authors.
- *
- * It was released under the Apache License, Version 2.0 (the "License"), available at:
- * http://www.apache.org/licenses/LICENSE-2.0
- */
- template<typename scalar_t>
- C10_DEVICE scalar_t stirling_approx_tail(scalar_t k) {
- const static scalar_t kTailValues[] = {
- 0.0810614667953272,
- 0.0413406959554092,
- 0.0276779256849983,
- 0.02079067210376509,
- 0.0166446911898211,
- 0.0138761288230707,
- 0.0118967099458917,
- 0.0104112652619720,
- 0.00925546218271273,
- 0.00833056343336287
- };
- if (k <= 9) {
- return kTailValues[static_cast<size_t>(k)];
- }
- scalar_t kp1sq = (k + 1) * (k + 1);
- return (1.0 / 12 - (1.0 / 360 - 1.0 / 1260 / kp1sq) / kp1sq) / (k + 1);
- }
- template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
- C10_DEVICE scalar_t binomial_inversion(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
- accscalar_t U;
- accscalar_t geom_sum = 0;
- scalar_t num_geom = 0;
- accscalar_t logprob = compat_log1p(-prob);
- while (1) {
- U = standard_uniform.sample();
- accscalar_t geom = compat_ceil(compat_log(U) / logprob);
- geom_sum += geom;
- if (geom_sum > count) {
- break;
- }
- num_geom = num_geom + 1;
- }
- return num_geom;
- }
- template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
- C10_DEVICE scalar_t btrs(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
- scalar_t k;
- accscalar_t U, V, us;
- // This is spq in the paper.
- const accscalar_t stddev = compat_sqrt(count * prob * (1 - prob));
- // Other coefficients for Transformed Rejection sampling.
- const accscalar_t b = 1.15 + 2.53 * stddev;
- const accscalar_t a = -0.0873 + 0.0248 * b + 0.01 * prob;
- const accscalar_t c = count * prob + 0.5;
- const accscalar_t v_r = 0.92 - 4.2 / b;
- const accscalar_t r = prob / (1 - prob);
- const accscalar_t alpha = (2.83 + 5.1 / b) * stddev;
- const accscalar_t m = compat_floor((count + 1) * prob);
- while (1) {
- U = standard_uniform.sample() - 0.5;
- V = standard_uniform.sample();
- us = 0.5 - compat_abs(U);
- k = static_cast<scalar_t>(compat_floor((2 * a / us + b) * U + c));
- // Reject non-sensical answers.
- if (k < 0 || k > count) {
- continue;
- }
- // Region for which the box is tight, and we can return our calculated value.
- // This should happen 0.86 * v_r times. In the limit as n * p is large,
- // the acceptance rate converges to ~79% (and in the lower regime it is ~24%).
- if (us >= 0.07 && V <= v_r) {
- return k;
- }
- // This deviates from Hormann's BTRS algorithm, as there is a log missing.
- // For all (u, v) pairs outside of the bounding box, this calculates the
- // transformed-reject ratio.
- V = compat_log(V * alpha / (a / (us * us) + b));
- accscalar_t upperbound =
- ((m + 0.5) * compat_log((m + 1) / (r * (count - m + 1))) +
- (count + 1) * compat_log((count - m + 1) / (count - k + 1)) +
- (k + 0.5) * compat_log(r * (count - k + 1) / (k + 1)) +
- stirling_approx_tail<accscalar_t>(m) + stirling_approx_tail<accscalar_t>(count - m) -
- stirling_approx_tail<accscalar_t>(k) - stirling_approx_tail<accscalar_t>(count - k));
- if (V <= upperbound) {
- return k;
- }
- }
- }
- template<typename scalar_t, typename accscalar_t, typename uniform_sampler_t>
- C10_DEVICE scalar_t sample_binomial(scalar_t count, scalar_t prob, BaseSampler<accscalar_t, uniform_sampler_t>& standard_uniform) {
- if (count <= 0.0 || prob <= 0.0) {
- return 0;
- } else if (prob >= 1.0) {
- return count;
- } else if (prob <= 0.5) {
- if (count * prob >= 10.0) {
- // btrs
- return btrs<scalar_t, accscalar_t, uniform_sampler_t>(count, prob, standard_uniform);
- } else {
- // binomial inversion
- return binomial_inversion<scalar_t, accscalar_t, uniform_sampler_t>(count, prob, standard_uniform);
- }
- } else if (prob > 0.5) {
- scalar_t qprob = 1.0 - prob;
- if (count * qprob >= 10.0) {
- // btrs
- return count - btrs<scalar_t, accscalar_t, uniform_sampler_t>(count, qprob, standard_uniform);
- } else {
- // count - binomial inversion
- return count - binomial_inversion<scalar_t, accscalar_t, uniform_sampler_t>(count, qprob, standard_uniform);
- }
- } else {
- // prob is nan?
- return static_cast<scalar_t>(NAN);
- }
- }
- /*
- * This function is derived from the implementation of the digamma function in the Cephes Math Library.
- * See note [3-Clause BSD License for the Cephes Math Library] in ATen/native/Math.h.
- */
- template<typename scalar_t, typename accscalar_t>
- C10_DEVICE static inline scalar_t digamma_one(scalar_t x) {
- constexpr accscalar_t PSI_10 = 2.25175258906672110764;
- if (x == 0) {
- return INFINITY;
- }
- accscalar_t additional_summand = 0;
- int x_is_integer = x == compat_floor(x);
- if (x < 0) {
- if (x_is_integer) {
- return INFINITY;
- }
- // it is more standard to write this as recursion, but
- // nvcc does not like that
- additional_summand = -c10::pi<scalar_t> /
- compat_tan(c10::pi<scalar_t> * x);
- x = 1 - x;
- }
- // Push x to be >= 10
- accscalar_t result = 0;
- while (x < 10) {
- result -= 1 / x;
- x += 1;
- }
- if (x == 10) {
- return result + PSI_10 + additional_summand;
- }
- // Compute asymptotic digamma
- static const accscalar_t A[] = {
- 8.33333333333333333333E-2,
- -2.10927960927960927961E-2,
- 7.57575757575757575758E-3,
- -4.16666666666666666667E-3,
- 3.96825396825396825397E-3,
- -8.33333333333333333333E-3,
- 8.33333333333333333333E-2,
- };
- accscalar_t y = 0;
- if (x < 1.0e17f) {
- accscalar_t z = 1.0 / (x * x);
- y = z * polevl<accscalar_t>(z, A, 6);
- }
- return static_cast<scalar_t>(
- result + compat_log(x) - (0.5f / x) - y + additional_summand);
- }
- // Computes the reparameterized gradient -(d/dalpha cdf(x;alpha)) / pdf(x;alpha)
- // for random number x drawn from a standard Gamma distribution Gamma(alpha).
- template <typename scalar_t, typename accscalar_t>
- C10_HOST_DEVICE scalar_t standard_gamma_grad_one(scalar_t alpha_, scalar_t x_) {
- // Use a Taylor series expansion for small x.
- accscalar_t x = static_cast<accscalar_t>(x_);
- accscalar_t alpha = static_cast<accscalar_t>(alpha_);
- if (x < 0.8f) {
- accscalar_t numer = 1;
- accscalar_t denom = alpha;
- auto series1 = numer / denom;
- auto series2 = numer / (denom * denom);
- for (int i = 1; i <= 5; ++i) {
- numer *= -x / static_cast<accscalar_t>(i);
- denom += 1;
- series1 += numer / denom;
- series2 += numer / (denom * denom);
- }
- const auto pow_x_alpha = compat_pow(x, alpha);
- const auto gamma_pdf = compat_pow(x, alpha - 1) * compat_exp(-x);
- const auto gamma_cdf = pow_x_alpha * series1;
- const auto gamma_cdf_alpha =
- (compat_log(x) - digamma_one<accscalar_t, accscalar_t>(alpha)) *
- gamma_cdf -
- pow_x_alpha * series2;
- const auto result = -gamma_cdf_alpha / gamma_pdf;
- return isnan(result) ? static_cast<scalar_t>( 0.f ) : static_cast<scalar_t>(result);
- }
- // Use a Rice saddle point expansion for large alpha.
- if (alpha > 8.0f) {
- if (0.9f * alpha <= x && x <= 1.1f * alpha) {
- const auto numer_1 = 1 + 24 * alpha * (1 + 12 * alpha);
- const auto numer_2 = 1440 * (alpha * alpha) + 6 * x * (53 - 120 * x)
- - 65 * x * x / alpha + alpha * (107 + 3600 * x);
- const auto denom = 1244160 * (alpha * alpha) * (alpha * alpha);
- return static_cast<scalar_t>(numer_1 * numer_2 / denom);
- }
- const auto denom = compat_sqrt(8 * alpha);
- const auto term2 = denom / (alpha - x);
- const auto term3 = compat_pow(
- x - alpha - alpha * compat_log(x / alpha),
- static_cast<accscalar_t>(-1.5));
- const auto term23 = (x < alpha) ? term2 - term3 : term2 + term3;
- const auto term1 = compat_log(x / alpha) * term23 -
- compat_sqrt(2 / alpha) * (alpha + x) / ((alpha - x) * (alpha - x));
- const auto stirling = 1 + 1 / (12 * alpha) * (1 + 1 / (24 * alpha));
- const auto numer = x * term1;
- return static_cast<scalar_t>(-stirling * numer / denom);
- }
- // Use a bivariate rational approximation to the reparameterized gradient.
- const auto u = compat_log(x / alpha);
- const auto v = compat_log(alpha);
- static const accscalar_t coef_uv[3][8] = {
- {0.16009398, -0.094634809, 0.025146376, -0.0030648343,
- 1, 0.32668115, 0.10406089, 0.0014179084},
- {0.53487893, 0.1298071, 0.065735949, -0.0015649758,
- 0.16639465, 0.020070113, -0.0035938915, -0.00058392623},
- {0.040121004, -0.0065914022, -0.0026286047, -0.0013441777,
- 0.017050642, -0.0021309326, 0.00085092367, -1.5247877e-07},
- };
- accscalar_t coef_v[8];
- for (int i = 0; i < 8; ++ i) {
- coef_v[i] = coef_uv[0][i] + u * (coef_uv[1][i] + u * coef_uv[2][i]);
- }
- const auto p = coef_v[0] + v * (coef_v[1] + v * (coef_v[2] + v * coef_v[3]));
- const auto q = coef_v[4] + v * (coef_v[5] + v * (coef_v[6] + v * coef_v[7]));
- return static_cast<scalar_t>(compat_exp(p / q));
- }
- // Approximate reparameterized gradient of Beta(x,alpha,beta) wrt alpha.
- // Assumes x is close to zero and uses a Taylor expansion.
- template <typename scalar_t, typename accscalar_t>
- C10_DEVICE static inline scalar_t _beta_grad_alpha_small(scalar_t x, scalar_t alpha, scalar_t beta) {
- const scalar_t factor = digamma_one<scalar_t, accscalar_t>(alpha)
- - digamma_one<scalar_t, accscalar_t>(alpha + beta) - compat_log(x);
- scalar_t numer = 1;
- scalar_t series = numer / alpha * (factor + 1 / alpha);
- for (int i = 1; i <= 10; ++i) {
- scalar_t casted_i = static_cast<scalar_t>(i);
- numer *= (casted_i - beta) * x / casted_i;
- const scalar_t denom = alpha + casted_i;
- series += numer / denom * (factor + 1 / denom);
- }
- const scalar_t result = x * compat_pow(1 - x, -beta) * series;
- return isnan(result) ? static_cast<scalar_t>( 0.f ) : result;
- }
- // Approximate reparameterized gradient of Beta(x,alpha,beta) wrt beta.
- // Assumes x is close to zero and uses a Taylor expansion.
- template <typename scalar_t, typename accscalar_t>
- C10_DEVICE static inline scalar_t _beta_grad_beta_small(scalar_t x, scalar_t alpha, scalar_t beta) {
- const scalar_t factor = digamma_one<scalar_t, accscalar_t>(alpha + beta) - digamma_one<scalar_t, accscalar_t>(beta);
- scalar_t numer = 1, betas = 1, dbetas = 0, series = factor / alpha;
- for (int i = 1; i <= 8; ++i) {
- scalar_t casted_i = static_cast<scalar_t>(i);
- numer *= -x / casted_i;
- dbetas = dbetas * (beta - casted_i) + betas;
- betas = betas * (beta - casted_i);
- series += numer / (alpha + casted_i) * (dbetas + factor * betas);
- }
- const scalar_t result = -compat_pow(1 - x, 1 - beta) * series;
- return isnan(result) ? static_cast<scalar_t>( 0.f ) : result;
- }
- // Approximate reparameterized gradient of Beta(x,alpha,beta) wrt alpha.
- // Assumes alpha and beta are both large and uses a Rice saddle point expansion.
- // To ensure numerical stability, this computation is performed at higher precision.
- template<typename scalar_t, typename accscalar_t>
- C10_DEVICE static inline scalar_t _beta_grad_alpha_mid(accscalar_t x, accscalar_t alpha, accscalar_t beta) {
- const accscalar_t total = alpha + beta;
- const accscalar_t mean = alpha / total;
- const accscalar_t std = compat_sqrt(alpha * beta / (total + 1)) / total;
- if (mean - 0.1 * std <= x && x <= mean + 0.1 * std) {
- // Avoid the singularity at x = mean.
- const accscalar_t poly = 47 * x * (beta * beta) * (beta * beta) + alpha * (
- (43 + 20 * (16 + 27 * beta) * x) * (beta * beta) * beta + alpha * (
- 3 * (59 + 180 * beta - 90 * x) * (beta * beta) + alpha * (
- (453 + 1620 * beta * (1 - x) - 455 * x) * beta + alpha * (
- 8 * (1 - x) * (135 * beta - 11)))));
- const accscalar_t prefactor_num = (1 + 12 * alpha) * (1 + 12 * beta) / (total * total);
- const accscalar_t prefactor_den = 12960 * alpha * alpha * alpha * beta * beta * (1 + 12 * total);
- return prefactor_num / (1 - x) * poly / prefactor_den;
- }
- const accscalar_t prefactor = -x / compat_sqrt(2 * alpha * beta / total);
- const accscalar_t stirling = (1 + 1 / (12 * alpha) + 1 / (288 * alpha * alpha))
- * (1 + 1 / (12 * beta) + 1 / (288 * beta * beta))
- / (1 + 1 / (12 * total) + 1 / (288 * total * total));
- const accscalar_t term1_num = 2 * (alpha * alpha) * (x - 1) + alpha * beta * (x - 1) - x * (beta * beta);
- const accscalar_t axbx = alpha * (x - 1) + beta * x;
- const accscalar_t term1_den = compat_sqrt(2 * alpha / beta) * compat_pow(total, static_cast<accscalar_t>(1.5f)) * axbx * axbx;
- const accscalar_t term1 = term1_num / term1_den;
- const accscalar_t term2 = 0.5f * compat_log(alpha / (total * x));
- const accscalar_t term3_num = compat_sqrt(8 * alpha * beta / total);
- const accscalar_t term3_den = beta * x + alpha * (x - 1);
- const accscalar_t term3 = term3_num / term3_den;
- const accscalar_t term4_base = beta * compat_log(beta / (total * (1 - x))) +
- alpha * compat_log(alpha / (total * x));
- const accscalar_t term4 = compat_pow(term4_base, static_cast<accscalar_t>(-1.5f));
- const accscalar_t term1234 = term1 + term2 * (term3 + (x < mean ? term4 : -term4));
- return static_cast<scalar_t>(stirling * prefactor * term1234);
- }
- // Computes a scaled reparameterized gradient
- // -(d/dalpha cdf(x;alpha,beta)) / pdf(x;alpha,beta) / (1-x)
- // for random number x drawn from a Beta distribution Beta(alpha,beta).
- // This function inputs total=alpha+beta to make it easy to implement
- // Dirichlet reparameterized gradients in terms of Betas.
- template<typename scalar_t, typename accscalar_t>
- C10_HOST_DEVICE static inline scalar_t dirichlet_grad_one(scalar_t x, scalar_t alpha, scalar_t total) {
- accscalar_t x_ = static_cast<accscalar_t>(x);
- accscalar_t alpha_ = static_cast<accscalar_t>(alpha);
- accscalar_t total_ = static_cast<accscalar_t>(total);
- const scalar_t beta = total - alpha;
- const accscalar_t beta_ = total_ - alpha_;
- const scalar_t boundary = total * x * (1 - x);
- // Use an asymptotic approximation for x close to 0.
- if (x <= 0.5f && boundary < 2.5f) {
- return _beta_grad_alpha_small<scalar_t, accscalar_t>(x, alpha, beta);
- }
- // Use an asymptotic approximation for x close to 1.
- if (x >= 0.5f && boundary < 0.75f) {
- return -_beta_grad_beta_small<scalar_t, accscalar_t>(1 - x, beta, alpha);
- }
- // Use an asymptotic approximation when alpha and (total - alpha) are both large.
- if (alpha > 6 && beta > 6) {
- return _beta_grad_alpha_mid<scalar_t, accscalar_t>(x_, alpha_, beta_);
- }
- // Use a rational correction to an analytic approximation.
- static const accscalar_t c[2][3][3][4] = {
- {{{1.003668233, -0.01061107488, -0.0657888334, 0.01201642863},
- {0.6336835991, -0.3557432599, 0.05486251648, -0.001465281033},
- {-0.03276231906, 0.004474107445, 0.002429354597, -0.0001557569013}},
- {{0.221950385, -0.3187676331, 0.01799915743, 0.01074823814},
- {-0.2951249643, 0.06219954479, 0.01535556598, 0.001550077057},
- {0.02155310298, 0.004170831599, 0.001292462449, 6.976601077e-05}},
- {{-0.05980841433, 0.008441916499, 0.01085618172, 0.002319392565},
- {0.02911413504, 0.01400243777, -0.002721828457, 0.000751041181},
- {0.005900514878, -0.001936558688, -9.495446725e-06, 5.385558597e-05}}},
- {{{1, -0.02924021934, -0.04438342661, 0.007285809825},
- {0.6357567472, -0.3473456711, 0.05454656494, -0.002407477521},
- {-0.03301322327, 0.004845219414, 0.00231480583, -0.0002307248149}},
- {{0.5925320577, -0.1757678135, 0.01505928619, 0.000564515273},
- {0.1014815858, -0.06589186703, 0.01272886114, -0.0007316646956},
- {-0.007258481865, 0.001096195486, 0.0003934994223, -4.12701925e-05}},
- {{0.06469649321, -0.0236701437, 0.002902096474, -5.896963079e-05},
- {0.001925008108, -0.002869809258, 0.0008000589141, -6.063713228e-05},
- {-0.0003477407336, 6.959756487e-05, 1.097287507e-05, -1.650964693e-06}}},
- };
- const accscalar_t u = compat_log(x_);
- const accscalar_t a = compat_log(alpha_) - u;
- const accscalar_t b = compat_log(total_) - a;
- const accscalar_t pow_u[3] = {1, u, u * u};
- const accscalar_t pow_a[3] = {1, a, a * a};
- accscalar_t p = 0.0;
- accscalar_t q = 0.0;
- for (int i = 0; i < 3; ++i) {
- for (int j = 0; j < 3; ++j) {
- const accscalar_t ua = pow_u[i] * pow_a[j];
- p += ua * (c[0][i][j][0] + b * (c[0][i][j][1] + b * (c[0][i][j][2] + b * c[0][i][j][3])));
- q += ua * (c[1][i][j][0] + b * (c[1][i][j][1] + b * (c[1][i][j][2] + b * c[1][i][j][3])));
- }
- }
- const accscalar_t approx = x_ * (digamma_one<scalar_t, accscalar_t>(total_) - digamma_one<scalar_t, accscalar_t>(alpha_)) / beta_;
- return static_cast<scalar_t>(p / q * approx);
- }
- } // namespace
|