123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 |
- #pragma once
- #include <ATen/core/Tensor.h>
- #include <ATen/Dispatch.h>
- #include <ATen/Generator.h>
- #include <ATen/ExpandUtils.h>
- #include <ATen/Tensor.h>
- #include <ATen/MemoryOverlap.h>
- #include <ATen/NamedTensorUtils.h>
- #include <ATen/native/Resize.h>
- #include <ATen/native/TensorIterator.h>
- #include <c10/util/Optional.h>
- #include <limits>
- #include <cmath>
- #ifndef AT_PER_OPERATOR_HEADERS
- #include <ATen/Functions.h>
- #else
- #include <ATen/ops/empty_like.h>
- #include <ATen/ops/empty.h>
- #include <ATen/ops/full.h>
- #include <ATen/ops/view_as_real.h>
- #endif
- namespace at {
- namespace native {
- namespace templates {
- // ==================================================== Random ========================================================
- // The purpose of `update_from` and `update_to` is to find the closest valid int64_t number that can be used as actual `from`.
- // The current implementation of `random_` uses uint64_t arithmetics and casts the result to the target dtype(scalar_t).
- // This casting can result in generating numbers that happen to be greater or equal to `to` value. For instance:
- //
- // auto actual = torch::empty({3, 3}, torch::half);
- // actual.random_(0, 65504);
- //
- // If random's uint64_t arithmetics produces 65503 as a random value after casting to torch::half it becomes 65504
- // and violates the requirement that random value must be less than `to`. To resolve this issue `update_from` and `update_to`
- // moves `from` to the right and `to` to the left to the next closest value that won't go outside [from, to) after casting to
- // the target dtype. For `to` = 65504 it moves left for (1 << (log2(to) - 11 + 1)) = 32 and becomes 65472, which is previous
- // available number for torch::half dtype.
- template<typename scalar_t>
- int64_t update_from(int64_t from) {
- static_assert(
- std::is_floating_point<scalar_t>::value ||
- std::is_same<scalar_t, at::Half>::value ||
- std::is_same<scalar_t, at::BFloat16>::value, "scalar_t must be floating-point type");
- const auto from_plus_1 = static_cast<int64_t>(static_cast<scalar_t>(from + 1));
- if (from_plus_1 < from) {
- int64_t from_ = std::abs(from + 1);
- int n = 0;
- while (from_ >>= 1) ++n;
- // NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult)
- from = from_plus_1 + (1LL << (n - std::numeric_limits<scalar_t>::digits + 1));
- }
- return from;
- }
- template<typename scalar_t>
- int64_t update_to(int64_t to) {
- static_assert(
- std::is_floating_point<scalar_t>::value ||
- std::is_same<scalar_t, at::Half>::value ||
- std::is_same<scalar_t, at::BFloat16>::value, "scalar_t must be floating-point type");
- const auto to_minus_1 = static_cast<int64_t>(static_cast<scalar_t>(to - 1));
- if (to_minus_1 >= to) {
- int64_t to_ = std::abs(to - 1);
- int n = 0;
- while (to_ >>= 1) ++n;
- // NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult)
- to = to_minus_1 - (1LL << (n - std::numeric_limits<scalar_t>::digits + 1));
- }
- return to;
- }
- template<template<typename> class random_kernel, typename RNG>
- at::Tensor& random_impl(at::Tensor& self, c10::optional<Generator> generator) {
- auto iter = at::TensorIterator::borrowing_nullary_op(self);
- random_kernel<RNG>()(iter, generator);
- return self;
- }
- #define CHECK_OUT_OF_BOUNDS(var, name, min, max, dtype) \
- TORCH_CHECK(var >= min && var <= max, name , " is out of bounds for ", dtype); \
- #define WARN_OUT_OF_BOUNDS(var, name, digits, dtype) \
- if (var < -(1LL << digits) || var > (1LL << digits)) { \
- TORCH_WARN(name , " is out of bounds [-(2^", digits, "), 2^", digits, "]. ", \
- "Due to precision limitations ", dtype, " can support discrete uniform distribution only within this range. ", \
- "This warning will become an error in version 1.7 release, please fix the code in advance"); \
- }
- static void check_from_to_in_range(int64_t from, int64_t to_inc, caffe2::TypeMeta dtype) {
- const auto scalar_type = typeMetaToScalarType(dtype);
- if (isFloatingType(scalar_type)) {
- AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, scalar_type, "check_random_fp_bounds", [&] {
- const auto min = static_cast<double>(std::numeric_limits<scalar_t>::lowest());
- const auto max = static_cast<double>(std::numeric_limits<scalar_t>::max());
- CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
- CHECK_OUT_OF_BOUNDS(to_inc, "to - 1", min, max, dtype);
- constexpr auto digits = std::numeric_limits<scalar_t>::digits;
- WARN_OUT_OF_BOUNDS(from, "from", digits, dtype);
- WARN_OUT_OF_BOUNDS(to_inc, "to - 1", digits, dtype);
- });
- } else if (isIntegralType(scalar_type, /*includeBool=*/true)) {
- AT_DISPATCH_INTEGRAL_TYPES_AND(at::ScalarType::Bool, scalar_type, "check_random_integral_bounds", [&]() {
- const auto min = static_cast<int64_t>(std::numeric_limits<scalar_t>::lowest());
- const auto max = static_cast<int64_t>(std::numeric_limits<scalar_t>::max());
- CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
- CHECK_OUT_OF_BOUNDS(to_inc, "to - 1", min, max, dtype);
- });
- } else {
- TORCH_CHECK(false, "check_random_bounds handles only integral, floating-point and boolean types");
- }
- }
- template<template<typename> class random_from_to_kernel, typename RNG>
- at::Tensor& random_from_to_impl(at::Tensor& self, int64_t from, c10::optional<int64_t> to_opt, c10::optional<Generator> generator) {
- uint64_t range = 0;
- auto iter = at::TensorIterator::borrowing_nullary_op(self);
- if (to_opt.has_value()) {
- // [from, to)
- int64_t to = *to_opt;
- TORCH_CHECK(from < to, "random_ expects 'from' to be less than 'to', but got from=", from, " >= to=", to);
- if (isFloatingType(iter.dtype())) {
- AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "random_update_from_to", [&] {
- from = update_from<scalar_t>(from);
- to = update_to<scalar_t>(to);
- TORCH_CHECK(from < to, "random_ expects 'from' casted to dtype to be less than 'to' casted to dtype, but got from=", from, " >= to=", to);
- });
- }
- check_from_to_in_range(from, to - 1, self.dtype());
- range = static_cast<uint64_t>(to) - static_cast<uint64_t>(from);
- random_from_to_kernel<RNG>()(iter, range, from, generator);
- } else if (from != std::numeric_limits<int64_t>::lowest()) {
- // [from, std::numeric_limits<int64_t>::max()]
- int64_t to_inc = 0;
- if (isFloatingType(iter.dtype())) {
- AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "random_from_to_range_calc", [&] {
- constexpr int64_t scalar_t_max = static_cast<int64_t>(1) << std::numeric_limits<scalar_t>::digits;
- to_inc = scalar_t_max > std::numeric_limits<int64_t>::max() ? std::numeric_limits<int64_t>::max() : static_cast<int64_t>(scalar_t_max);
- from = update_from<scalar_t>(from);
- TORCH_CHECK(from < to_inc, "random_ expects 'from' casted to dtype to be less than or equal to 'to_inc' casted to dtype, but got from=", from, " > to_inc=", to_inc);
- });
- } else if (isIntegralType(iter.dtype(), /*includeBool=*/true)) {
- AT_DISPATCH_INTEGRAL_TYPES_AND(at::ScalarType::Bool, self.scalar_type(), "random_from_to_range_calc", [&] {
- if (std::is_same<scalar_t, bool>::value) {
- to_inc = static_cast<int64_t>(true);
- } else {
- to_inc = static_cast<int64_t>(std::numeric_limits<scalar_t>::max());
- }
- });
- } else {
- TORCH_CHECK(false, "random_from_to_impl handles only integral, floating-point and boolean types");
- }
- check_from_to_in_range(from, to_inc, self.dtype());
- range = static_cast<uint64_t>(to_inc) - static_cast<uint64_t>(from) + 1;
- random_from_to_kernel<RNG>()(iter, range, from, generator);
- } else {
- // [std::numeric_limits<int64_t>::lowest(), std::numeric_limits<int64_t>::max()]
- // range = 2^64
- random_from_to_kernel<RNG>()(iter, generator);
- }
- return self;
- }
- // ==================================================== Normal ========================================================
- #define CHECK_NORMAL_TENSOR_STD(std) \
- do { \
- TORCH_CHECK( \
- !std.is_complex(), \
- "normal expects standard deviation to be non-complex"); \
- TORCH_CHECK( \
- std.numel() == 0 || std.is_meta() || std.min().ge(0).item<bool>(), \
- "normal expects all elements of std >= 0.0"); \
- } while (0)
- #define CHECK_NORMAL_STD(std) \
- TORCH_CHECK(std >= 0.0, "normal expects std >= 0.0, but found std ", std);
- template<template<typename> class normal_kernel, typename RNG>
- Tensor& normal_impl_(Tensor& self, double mean, double std, c10::optional<Generator> gen) {
- CHECK_NORMAL_STD(std);
- if (self.is_complex()) {
- auto float_tensor = at::view_as_real(self);
- // variance for normal distribution of the real and imaginary values
- // is half of the input variance
- normal_kernel<RNG>()(float_tensor, mean, std/(std::sqrt(2)), gen);
- } else {
- normal_kernel<RNG>()(self, mean, std, gen);
- }
- return self;
- }
- template<template<typename> class normal_kernel, typename RNG>
- Tensor& normal_out_impl(Tensor& output, const Tensor& mean, double std, c10::optional<Generator> gen) {
- CHECK_NORMAL_STD(std);
- auto std_tensor = at::empty_like(output, MemoryFormat::Contiguous);
- auto shape = at::infer_size(mean.sizes(), std_tensor.sizes());
- at::native::resize_output(output, shape);
- normal_impl_<normal_kernel, RNG>(output, 0, std, gen);
- output.add_(mean);
- return output;
- }
- template<template<typename> class normal_kernel, typename RNG>
- Tensor& normal_out_impl(Tensor& output, double mean, const Tensor& std, c10::optional<Generator> gen) {
- CHECK_NORMAL_TENSOR_STD(std);
- auto mean_tensor = at::full({}, mean, output.options());
- auto shape = at::infer_size(mean_tensor.sizes(), std.sizes());
- at::native::resize_output(output, shape);
- normal_impl_<normal_kernel, RNG>(output, 0, 1, gen);
- // CUDA NB: addcmul_out copies the tensor to be added into the output.
- // The previous function here was addcmul_out(output, mean_tensor, output, std, 1);
- // The third argument is not a constant reference and hence the samples in output are overwritten.
- // Consequently, the computation performed is mean_tensor + mean_tensor * std instead of mean_tensor + output * std
- output.mul_(std).add_(mean_tensor);
- return output;
- }
- template<template<typename> class normal_kernel, typename RNG>
- Tensor& normal_out_impl(Tensor& output, const Tensor& mean, const Tensor& std, c10::optional<Generator> gen) {
- CHECK_NORMAL_TENSOR_STD(std);
- auto shape = at::infer_size(mean.sizes(), std.sizes());
- at::native::resize_output(output, shape);
- normal_impl_<normal_kernel, RNG>(output, 0, 1, gen);
- // CUDA NB: addcmul_out copies the tensor to be added into the output.
- // The previous function here was addcmul_out(output, mean, output, std, 1);
- // The third argument is not a constant reference and hence the samples in output are overwritten.
- // Consequently, the computation performed is mean + mean * std instead of mean + output * std
- output.mul_(std).add_(mean);
- return output;
- }
- template<template<typename> class normal_kernel, typename RNG>
- Tensor normal_impl(const Tensor& mean, double std, c10::optional<Generator> gen) {
- CHECK_NORMAL_STD(std);
- Tensor ret = at::empty_like(mean, MemoryFormat::Contiguous);
- normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
- return ret;
- }
- template<template<typename> class normal_kernel, typename RNG>
- Tensor normal_impl(double mean, const Tensor& std, c10::optional<Generator> gen) {
- CHECK_NORMAL_TENSOR_STD(std);
- Tensor ret = at::empty_like(std, MemoryFormat::Contiguous);
- normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
- return ret;
- }
- template<template<typename> class normal_kernel, typename RNG>
- Tensor normal_impl(const Tensor& mean, const Tensor& std, c10::optional<Generator> gen) {
- CHECK_NORMAL_TENSOR_STD(std);
- auto shape = at::infer_size(mean.sizes(), std.sizes());
- Tensor ret = at::empty(shape, mean.options(), MemoryFormat::Contiguous);
- normal_out_impl<normal_kernel, RNG>(ret, mean, std, gen);
- return ret;
- }
- // ==================================================== Uniform =======================================================
- template<template<typename> class uniform_kernel, typename RNG>
- at::Tensor& uniform_impl_(at::Tensor& self, double from, double to, c10::optional<Generator> generator) {
- if (self.is_complex()) {
- auto float_tensor = at::view_as_real(self);
- uniform_impl_<uniform_kernel, RNG>(float_tensor, from, to, generator);
- } else {
- AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, self.scalar_type(), "check_uniform_bounds", [&] {
- const auto dtype = self.dtype();
- const auto min = static_cast<double>(std::numeric_limits<scalar_t>::lowest());
- const auto max = static_cast<double>(std::numeric_limits<scalar_t>::max());
- CHECK_OUT_OF_BOUNDS(from, "from", min, max, dtype);
- CHECK_OUT_OF_BOUNDS(to, "to", min, max, dtype);
- TORCH_CHECK(from <= to, "uniform_ expects to return a [from, to) range, but found from=", from, " > to=", to);
- TORCH_CHECK((to - from) <= std::numeric_limits<scalar_t>::max(),
- "uniform_ expects to-from <= std::numeric_limits<", toString(self.scalar_type()),
- ">::max(), but found to=", to, " and from=", from,
- " which result in to-from to exceed the limit");
- from = std::min(std::max(from, min), max);
- to = std::max(std::min(to, max), min);
- });
- auto iter = at::TensorIterator::borrowing_nullary_op(self);
- uniform_kernel<RNG>()(iter, from, to, generator);
- }
- return self;
- }
- // ================================================== LogNormal =======================================================
- template<template<typename> class log_normal_kernel, typename RNG>
- at::Tensor& log_normal_impl_(at::Tensor& self, double mean, double std, c10::optional<Generator> gen) {
- TORCH_CHECK(std > 0.0, "log_normal_ expects std > 0.0, but found std=", std);
- auto iter = TensorIterator::borrowing_nullary_op(self);
- log_normal_kernel<RNG>()(iter, mean, std, gen);
- return self;
- }
- // =================================================== Geometric ======================================================
- template<template<typename> class geometric_kernel, typename RNG>
- Tensor& geometric_impl_(Tensor& self, double p, c10::optional<Generator> gen) {
- TORCH_CHECK(0 < p && p < 1, "geometric_ expects p to be in (0, 1), but got p=", p);
- auto iter = TensorIterator::borrowing_nullary_op(self);
- geometric_kernel<RNG>()(iter, p, gen);
- return self;
- }
- // ================================================== Exponential =====================================================
- template<template<typename> class exponential_kernel, typename RNG>
- Tensor& exponential_impl_(Tensor& self, double lambda, c10::optional<Generator> gen) {
- TORCH_CHECK(lambda > 0.0, "exponential_ expects lambda > 0.0, but found lambda=", lambda);
- auto iter = TensorIterator::borrowing_nullary_op(self);
- exponential_kernel<RNG>()(iter, lambda, gen);
- return self;
- }
- // ==================================================== Cauchy ========================================================
- template<template<typename> class cauchy_kernel, typename RNG>
- Tensor& cauchy_impl_(Tensor& self, double median, double sigma, c10::optional<Generator> gen) {
- // TODO: instead of variable name 'sigma', use 'gamma' or 'scale'
- // the variance, squared sigma, is undefined for cauchy distribution
- TORCH_CHECK(sigma > 0.0, "cauchy_ expects sigma > 0.0, but found sigma=", sigma);
- TORCH_CHECK(at::isFloatingType(self.scalar_type()), "Cauchy distribution is a continuous probability distribution. dtype must be a floating point but you specified ", self.dtype());
- auto iter = TensorIterator::borrowing_nullary_op(self);
- cauchy_kernel<RNG>()(iter, median, sigma, gen);
- return self;
- }
- // ==================================================== Bernoulli =====================================================
- template<template<typename> class bernoulli_tensor_kernel, typename RNG>
- Tensor& bernoulli_impl_(Tensor& self, const Tensor& p_, c10::optional<Generator> gen) {
- NoNamesGuard guard;
- at::assert_no_internal_overlap(self);
- bernoulli_tensor_kernel<RNG>()(self, p_, gen);
- return self;
- }
- template<template<typename> class bernoulli_scalar_kernel, typename RNG>
- Tensor& bernoulli_impl_(Tensor& self, double p, c10::optional<Generator> gen) {
- TORCH_CHECK(0 <= p && p <= 1, "bernoulli_ expects p to be in [0, 1], but got p=", p);
- at::assert_no_internal_overlap(self);
- bernoulli_scalar_kernel<RNG>()(self, p, gen);
- return self;
- }
- template<template<typename> class bernoulli_tensor_kernel, typename RNG>
- Tensor& bernoulli_out_impl(Tensor& result, const Tensor& self, c10::optional<Generator> gen) {
- // result.resize_as_(self) requires self to have same dtype as result, so we
- // use resize_ instead.
- // TODO: Fix resize_as_. See pytorch/pytorch#11665.
- result.resize_(self.sizes());
- bernoulli_impl_<bernoulli_tensor_kernel, RNG>(result, self, gen);
- namedinference::propagate_names(result, self);
- return result;
- }
- #undef CHECK_OUT_OF_BOUNDS
- #undef WARN_OUT_OF_BOUNDS
- }}}
|