123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- #pragma once
- #include <assert.h>
- #if defined(__CUDA_ARCH__) || defined(__HIP_DEVICE_COMPILE__)
- #include <cuda_runtime.h>
- #endif
- namespace at {
- namespace cuda {
- namespace detail {
- // A utility class to implement integer division by multiplication, given a fixed
- // divisor.
- //
- // WARNING: The fast divider algorithm is only implemented for unsigned int;
- // otherwise we default to plain integer division. For unsigned int,
- // we further assume that the dividend is at most INT32_MAX. Thus,
- // IntDivider must NOT be used for general integer division.
- //
- // This reduced range is enough for our purpose, and it allows us to
- // slightly simplify the computation.
- //
- // (NOTE: Below, "2^k" denotes exponentiation, i.e., 1<<k.)
- //
- // For any N-bit unsigned integer d (> 0), we can find a "magic number" m (2^N
- // <= m < 2^(N+1)) and shift s such that:
- //
- // \floor(n / d) = \floor((m * n) / 2^(N+s)).
- //
- // Given such m and s, the integer division can be then implemented as:
- //
- // let m' = m - 2^N // 0 <= m' < 2^N
- //
- // fast_integer_division(n):
- // // Multiply two N-bit unsigned integers: the result is a 2N-bit unsigned
- // // integer. Then take the higher N bits.
- // t = (m' * n) >> N
- //
- // // Here we use the fact that n is less than 2^(N-1): otherwise the value
- // // of (t + n) may not fit in an N-bit integer.
- // return (t + n) >> s
- //
- // Finding such a magic number is surprisingly easy:
- //
- // s = \ceil(\log_2 d)
- // m' = \floor(2^N * (2^s - d) / d) + 1 // Need 2N-bit integer arithmetic.
- //
- // See also:
- // - Division by Invariant Integers Using Multiplication,
- // Torbjörn Granlund and Peter L. Montgomery, 1994.
- //
- // - http://www.hackersdelight.org/magic.htm
- //
- // - http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
- // Result of div/mod operation stored together.
- template <typename Value>
- struct DivMod {
- Value div, mod;
- C10_HOST_DEVICE DivMod(Value div, Value mod) : div(div), mod(mod) { }
- };
- // Base case: we only have an implementation for uint32_t for now. For
- // everything else, we use plain division.
- template <typename Value>
- struct IntDivider {
- IntDivider() = default;
- IntDivider(Value d) : divisor(d) { }
- C10_HOST_DEVICE inline Value div(Value n) const { return n / divisor; }
- C10_HOST_DEVICE inline Value mod(Value n) const { return n % divisor; }
- C10_HOST_DEVICE inline DivMod<Value> divmod(Value n) const {
- return DivMod<Value>(n / divisor, n % divisor);
- }
- Value divisor;
- };
- // Implement fast integer division.
- template <>
- struct IntDivider<unsigned int> {
- static_assert(sizeof(unsigned int) == 4, "Assumes 32-bit unsigned int.");
- IntDivider() = default;
- IntDivider(unsigned int d) : divisor(d) {
- assert(divisor >= 1 && divisor <= INT32_MAX);
- // TODO: gcc/clang has __builtin_clz() but it's not portable.
- for (shift = 0; shift < 32; shift++) if ((1U << shift) >= divisor) break;
- uint64_t one = 1;
- uint64_t magic = ((one << 32) * ((one << shift) - divisor)) / divisor + 1;
- m1 = magic;
- assert(m1 > 0 && m1 == magic); // m1 must fit in 32 bits.
- }
- C10_HOST_DEVICE inline unsigned int div(unsigned int n) const {
- #if defined(__CUDA_ARCH__) || defined(__HIP_DEVICE_COMPILE__)
- // 't' is the higher 32-bits of unsigned 32-bit multiplication of 'n' and
- // 'm1'.
- unsigned int t = __umulhi(n, m1);
- return (t + n) >> shift;
- #else
- // Using uint64_t so that the addition does not overflow.
- uint64_t t = ((uint64_t) n * m1) >> 32;
- return (t + n) >> shift;
- #endif
- }
- C10_HOST_DEVICE inline unsigned int mod(unsigned int n) const {
- return n - div(n) * divisor;
- }
- C10_HOST_DEVICE inline DivMod<unsigned int> divmod(unsigned int n) const {
- unsigned int q = div(n);
- return DivMod<unsigned int>(q, n - q * divisor);
- }
- unsigned int divisor; // d above.
- unsigned int m1; // Magic number: m' above.
- unsigned int shift; // Shift amounts.
- };
- }}} // namespace at::cuda::detail
|