123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- #pragma once
- #include <ATen/Config.h>
- #include <ATen/Parallel.h>
- #include <ATen/OpMathType.h>
- #include <ATen/cpu/vec/functional.h>
- #include <ATen/cpu/vec/vec.h>
- #include <c10/util/complex.h>
- // This header implements various unary operations using a MKL VML style
- // interface.
- // It implements various functions with a simple interface
- // For example it enables the user to call vsin(float* out, const float* in,
- // size) This functions takes a pointer to a contious output array of floats and
- // a constant input array. It will then apply sin to each value in the input
- // array and write the result into the output array. out and in may point to the
- // same memory, i.e. this fully supports in-place operations. These functions
- // also implement their own parallelization, so take precautions when calling
- // these from threaded functions.
- // When MKL is available it will call into MKL's VML library similar to NumPy
- // If MKL is not available it will use SLEEF.
- // This file might be compiled under AVX or AVX2 when called from e.g.
- // UnaryOpsKernel.cpp
- #include <algorithm>
- #include <cstddef>
- #include <cstdint>
- #include <cstring>
- #include <type_traits>
- #if AT_MKL_ENABLED() && !defined(__APPLE__)
- #include <mkl.h>
- #endif
- namespace at {
- namespace vml {
- inline namespace CPU_CAPABILITY {
- using namespace vec;
- template <typename scalar_t>
- inline void vrsqrt(scalar_t* out, scalar_t* in, int64_t size) {
- parallel_for(0, size, 2048, [out, in](int64_t begin, int64_t end) {
- map(
- [](const Vectorized<scalar_t>& x) {
- return Vectorized<scalar_t>((scalar_t)(1)) / x.sqrt();
- },
- out + begin,
- in + begin,
- end - begin);
- });
- }
- // NB: We ignore numerical errors by convention and leave them to the user
- #define IMPLEMENT_VML(op) \
- template <typename scalar_t> \
- inline void v##op(scalar_t* out, const scalar_t* in, int64_t size) { \
- using vec_t = Vectorized<vec_scalar_t<scalar_t>>; \
- vec::map([](vec_t x) { return x.op(); }, out, in, size); \
- } \
- IMPLEMENT_VML(abs)
- IMPLEMENT_VML(acos)
- IMPLEMENT_VML(asin)
- IMPLEMENT_VML(atan)
- IMPLEMENT_VML(ceil)
- IMPLEMENT_VML(cos)
- // IMPLEMENT_VML(cosh)
- IMPLEMENT_VML(erf)
- IMPLEMENT_VML(erfc)
- IMPLEMENT_VML(erfinv)
- IMPLEMENT_VML(exp)
- IMPLEMENT_VML(expm1)
- IMPLEMENT_VML(floor)
- IMPLEMENT_VML(i0)
- IMPLEMENT_VML(i0e)
- IMPLEMENT_VML(reciprocal)
- IMPLEMENT_VML(log)
- IMPLEMENT_VML(log10)
- IMPLEMENT_VML(log1p)
- IMPLEMENT_VML(log2)
- IMPLEMENT_VML(neg)
- IMPLEMENT_VML(sin)
- // IMPLEMENT_VML(sinh)
- IMPLEMENT_VML(sqrt)
- IMPLEMENT_VML(round)
- IMPLEMENT_VML(rsqrt)
- IMPLEMENT_VML(tan)
- IMPLEMENT_VML(tanh)
- IMPLEMENT_VML(trunc)
- IMPLEMENT_VML(lgamma)
- #if AT_MKL_ENABLED() && !defined(__APPLE__)
- // NB: LP64 MKL is the most commonly used and thus we assume it here. That means
- // we need to expect MKL_INT to be of type int, which implies int32_t in most
- // cases.
- static_assert(
- std::is_same<MKL_INT, int32_t>::value,
- "MKL_INT is assumed to be int32_t");
- #define IMPLEMENT_VML_MKL_STUB(op, mklop, type, mkltype) \
- template <> \
- inline void v##op(type * out, const type * in, int64_t size) { \
- int64_t max_mkl_ind = std::numeric_limits<MKL_INT>::max(); \
- if (size <= static_cast<int64_t>(max_mkl_ind)) { \
- vm##mkltype##mklop( \
- size, in, out, VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
- } else { \
- MKL_INT ind = 0; \
- int64_t chunks = size / max_mkl_ind; \
- int64_t rest = size % max_mkl_ind; \
- for (; ind < chunks; ind++) { \
- vm##mkltype##mklop( \
- max_mkl_ind, \
- in + ind * max_mkl_ind, \
- out + ind * max_mkl_ind, \
- VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
- } \
- vm##mkltype##mklop( \
- rest, \
- in + ind * max_mkl_ind, \
- out + ind * max_mkl_ind, \
- VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
- } \
- }
- #define IMPLEMENT_VML_MKL(op, mklop) \
- IMPLEMENT_VML_MKL_STUB(op, mklop, float, s) \
- IMPLEMENT_VML_MKL_STUB(op, mklop, double, d)
- // NB: abs, cosh and sinh were temporarily disabled due to issues with Apple
- // NB: expm1 is disabled because on some configs it produces expm1(nan)=-1
- IMPLEMENT_VML_MKL(acos, Acos)
- IMPLEMENT_VML_MKL(asin, Asin)
- IMPLEMENT_VML_MKL(atan, Atan)
- IMPLEMENT_VML_MKL(cos, Cos)
- // IMPLEMENT_VML_MKL(cosh, Cosh)
- IMPLEMENT_VML_MKL(erf, Erf)
- IMPLEMENT_VML_MKL(erfc, Erfc)
- IMPLEMENT_VML_MKL(erfinv, ErfInv)
- IMPLEMENT_VML_MKL(exp, Exp)
- // IMPLEMENT_VML_MKL(expm1, Expm1)
- IMPLEMENT_VML_MKL(log, Ln)
- IMPLEMENT_VML_MKL(log10, Log10)
- IMPLEMENT_VML_MKL(sin, Sin)
- // IMPLEMENT_VML_MKL(sinh, Sinh)
- IMPLEMENT_VML_MKL(sqrt, Sqrt)
- IMPLEMENT_VML_MKL(tan, Tan)
- IMPLEMENT_VML_MKL(tanh, Tanh)
- IMPLEMENT_VML_MKL(trunc, Trunc)
- // Not vectorized in MKL version tested
- // IMPLEMENT_VML_MKL(abs, Abs)
- // IMPLEMENT_VML_MKL(log1p, Log1p)
- #if INTEL_MKL_VERSION >= 20180406
- IMPLEMENT_VML_MKL(log2, Log2)
- #endif
- #endif
- } // namespace
- } // namespace vml
- } // namespace at
|