123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- #pragma once
- #include <ATen/LegacyBatchedTensorImpl.h>
- #include <ATen/core/IListRef.h>
- namespace at {
- // This file contains abstractions used for transforming *logical* vmap
- // arguments into *physical* arguments. (Keep reading for definitions of these
- // terms).
- // NOTE: [Logical vs physical args]
- // Consider the following vmap.
- // vmap(vmap(func, in_dims=(2,)), in_dims=(0,))(torch.ones(2, 3, 4))
- // This would produce a BatchedTensor wrapping a Tensor of size [2, 3, 4],
- // with batch dims 0 and 2:
- // BatchedTensor(ones(2, 3, 4), bdims=[(lvl=1,dim=0),(lvl=2,dim=2)])
- //
- // We say the *logical* view of the tensor has size [3] -- tensors inside
- // `func` appear to have size [3].
- // However, the *physical* underlying tensor (the one passed to vmap) has size
- // [2, 3, 4].
- //
- // This notion of logical vs physical also extends to non-tensor arguments.
- // Consider the previous tensor; let's assume the user called
- // `torch.sum(tensor, dim=0)` inside of `func`. Then the logical
- // dimension they are reducing over is dim 0 but the physical dim is dim 1
- // (the first non-batch dimension)
- // Forward declared; see NOTE: [What is a VmapPhysicalView?]
- struct VmapPhysicalView;
- // Most PyTorch operators take 4 or fewer inputs.
- constexpr int64_t kVmapTransformStaticInputSize = 4;
- using VmapPhysicalViewVec =
- SmallVector<VmapPhysicalView, kVmapTransformStaticInputSize>;
- // Pytorch generally advertises good performance for <= 5 dims.
- // (see ATen/core/DimVector.h). We add a few extra dims (~3) for vmap
- // dimensions to get 8. Adjust this number as necessary
- constexpr int64_t kVmapStaticDimVecSize = 8;
- using VmapDimVector = SmallVector<int64_t, kVmapStaticDimVecSize>;
- // NOTE: [What is an VmapTransform?]
- // An *VmapTransform* converts logical views of tensors to physical views.
- //
- // Batching rules use VmapTransforms to convert logical arguments to
- // physical arguments, then call one or more at:: operator that handles the
- // physical arguments, and then converts the physical result back to a logical
- // argument.
- // VmapTransform for operators that take tensors with multiple batch dims.
- // Given one or more logical views on Tensors, `logicalToPhysical`
- // permutes all of the batch dims to the front of the tensor, aligns
- // and expands the batch dims to match each other (according to their `level`),
- // and returns a VmapPhysicalView on the tensor(s).
- struct TORCH_API MultiBatchVmapTransform {
- static VmapPhysicalView logicalToPhysical(const Tensor& logical_tensor);
- static VmapPhysicalViewVec logicalToPhysical(ITensorListRef logical_tensors);
- };
- // VmapTransform for operators that broadcast all inputs.
- // Given some logical views on Tensors, `logicalToPhysical`:
- // - permutes all of the batch dims to the front of the tensors
- // - aligns all the batch dims to the collective levels of all of the tensors.
- // If a tensor does not have a batch dim for a vmap level, then it receives
- // a size-one dimension for said level.
- // - aligns the non-batch dims to have the same dimensionality, adding extra
- // size-1 dimensions in between the batch dimensions and the non-batch
- // dimensions so that the batch dimensions are lined up from the right.
- //
- // For example: given inputs of size (B, 2) and (B, 3, 2) where B is the batch
- // dimension, BroadcastingVmapTransform returns VmapPhysicalViews that wrap
- // tensors of size (B, 1, 2) and (B, 3, 2).
- //
- // Given inputs of size (B, 2) and (2,), BroadcastingVmapTransform returns
- // VmapPhysicalViews wrapping tensors of size (B, 2) and (1, 2). We don't
- // actually *need* to return a tensor of size (1, 2) for the second tensor
- // because the broadcasting operation takes care of that for us, but we do
- // it anyways to keep things simple.
- struct TORCH_API BroadcastingVmapTransform {
- static VmapPhysicalViewVec logicalToPhysical(TensorList logical_tensors);
- };
- // Forward declared, if you're reading this file head to toe, don't worry about
- // it yet.
- struct VmapPhysicalToLogicalMap;
- // NOTE: [What is a VmapPhysicalView?]
- // VmapPhysicalView represents a physical view on a Tensor.
- //
- // One can use it to further convert logical dimension indices, logical shapes,
- // and more to their physical variants, or convert a new (physical) tensor into
- // a logical BatchedTensor. (TODO(rzou): some of these are not yet implemented).
- //
- // VmapPhysicalView stores a physical tensor with all of its batch dimensions at
- // the front and some levels that correspond to said batch dimensions.
- //
- // The levels bitset specifies which vmap levels correspond to the batch
- // dimensions at the front of the tensor. In particular, the number of set bits
- // corresponds to the number of batch dimensions on `tensor` and the rightmost
- // bit of `levels` specifies the maximum number of nested vmaps we are in at
- // this point in time.
- // For example, given:
- // physical_view = VmapPhysicalView(tensor=ones(2, 3, 4, 5, 6), levels={1, 3})
- //
- // Rightmost bit of `levels` is 3 indicating the number of nested vmaps less
- // than or equal to 3.
- // bitset: 010100
- // ^
- // |
- // levels: 012345
- struct TORCH_API VmapPhysicalView {
- VmapPhysicalView(Tensor&& tensor, std::bitset<kVmapNumLevels> levels)
- : levels_(levels), tensor_(tensor) {
- TORCH_INTERNAL_ASSERT(!isBatchedTensor(tensor));
- }
- Tensor& tensor() {
- return tensor_;
- }
- const Tensor& tensor() const {
- return tensor_;
- }
- // Maps logical dim indices to physical dim indices. Also does dim wrapping.
- //
- // For example, given:
- // physical_view = VmapPhysicalView(tensor=ones(2, 3, 4, 5), levels={1, 3})
- //
- // Then physical_view.getPhysicalDims({0, 1}) returns {2, 3}.
- // This is because the size of levels tell us that the first two dimensions
- // of `tensor_` are batch dimensions, so a logical dim of `n` is actually
- // a physical dim of `n + 2`.
- VmapDimVector getPhysicalDims(OptionalIntArrayRef logical_dims) const;
- int64_t getPhysicalDim(int64_t logical_dim) const;
- // Returns a VmapPhysicalToLogicalMap object. This can be used for
- // mapping a physical tensor to a new logical tensor (BatchedTensor)
- VmapPhysicalToLogicalMap getPhysicalToLogicalMap() const;
- // Maps a logical shape to a physical shape by pre-pending the batch
- // sizes to the logical shape.
- VmapDimVector getPhysicalShape(IntArrayRef logical_shape) const;
- int64_t numBatchDims() const;
- private:
- int64_t numLogicalDims() const;
- std::bitset<kVmapNumLevels> levels_;
- Tensor tensor_;
- };
- // Convenience struct used for mapping a physical tensor (a non-BatchedTensor)
- // to a logical one (BatchedTensor). It holds some levels that are used to do
- // the mapping and assumes that the batch dimensions in the physical tensor all
- // occur at the front of the tensor.
- struct TORCH_API VmapPhysicalToLogicalMap {
- VmapPhysicalToLogicalMap(std::bitset<kVmapNumLevels> levels)
- : levels_(levels) {}
- // Maps a physical tensor to a new logical tensor (BatchedTensor).
- // Assumes that all of the "batch dimensions" are at the front
- // of the physical tensor. For example, given:
- // - x = rank-4 Tensor with size 2, 3, 5, 7
- // - levels = (2, 4)
- // Returns:
- // - BatchedTensor(x, bdims=[(dim=0,lvl=2), (dim=1, lvl=4)])
- Tensor apply(const Tensor& physical_tensor) const;
- // Given a vector of physical tensors,
- // 1. maps each tensor to a new logical tensor. Assumes that all of the
- // "batch dimensions" are at the front of the physical tensors.
- // 2. stores the new logical tensors back into the passed-in vector. This is
- // to avoid additional dynamic allocations.
- void applyInplace(std::vector<Tensor>& physical_tensors) const;
- std::bitset<kVmapNumLevels> levels_;
- };
- } // namespace at
|