123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- #pragma once
- #include <ATen/ArrayRef.h>
- #include <ATen/FunctionalStorageImpl.h>
- #include <ATen/core/IListRef.h>
- #include <ATen/core/List.h>
- #include <ATen/core/boxing/BoxedKernel.h>
- #include <ATen/core/boxing/impl/boxing.h>
- #include <ATen/core/dispatch/Dispatcher.h>
- #include <c10/core/DispatchKey.h>
- namespace at {
- // Note [Functionalization Pass In Core]
- // The Functionalization pass is used to remove aliasing from a pytorch program.
- //
- // This is useful for backends that don't support aliasing, like XLA and Vulkan.
- // It's also necessary in order to remove mutation from a program, which is
- // needed in Functorch.
- //
- // Consider this program:
- // a = torch.ones(...)
- // b = a.view(...)
- // b.add_(1)
- //
- // In this program, b is meant to alias with a due to the use of view(). At the
- // end of the program, both a and b are full of 2's. However, backends that
- // don't support aliasing aren't able to correctly implement the view()
- // operator. Instead, they can opt into the Functionalization pass, which will
- // sit between the user and the backend, and provide the necessary aliasing
- // logic.
- //
- // The functionalization pass will turn the above program into a slightly
- // different program that has the same semantics, transparently to the user,
- // that backends like XLA/Vulkan are able to implement a = torch.ones(...) b =
- // a.view_copy(...) # view() replaced with view_copy(). Backends like
- // XLA/Vulkan can implement this! b.add_(1) a.add_(1) # Our functionalization
- // pass machinery knows that a and b are aliased - it applies b's mutation to a
- // too.
- //
- // So, how does the functionalization pass keep track of which tensors are
- // aliased? The pass works by wrapping EVERY tensor in the program inside of a
- // FunctionalTensorWrapper, which knows about its alias'd tensors.
- //
- // See Note [Functionalization: Alias Removal] for details on the aliasing
- // machinery. See Note [Functionalization: Mutation Removal] for details on
- // mutation removal.
- struct TORCH_API FunctionalTensorWrapper : public c10::TensorImpl {
- explicit FunctionalTensorWrapper(const Tensor& value);
- // Additional constructor to create a FunctionalTensorWrapper directly from an
- // underlying tensor that was created from a view. For example, the code b =
- // a.view1() will generate a constructor call to FunctionalTensorWrapper(b, a,
- // view1_meta)
- explicit FunctionalTensorWrapper(
- const Tensor& view_value,
- const FunctionalTensorWrapper* base,
- functionalization::ViewMeta meta);
- // Get the underlying, actual tensor, that doesn't know anything about
- // functionalization.
- const Tensor& value() const {
- return value_;
- };
- // The concept of "level" is only ever important to functorch; it's exposed
- // here as more of a hook for functorch to use.
- int64_t level() const {
- return level_;
- };
- void set_level(int64_t level) {
- level_ = level;
- }
- // Sync's the underlying tensor with its alias, if it's out of date. This
- // involves two steps: 1) Apply any pending updates/mutations to the alias 2)
- // Replay the views (if any) to regenerate the current tensor off of the
- // updated alias.
- void sync_();
- // Performs step (1) of the sync. This is its own public API because it's
- // needed by view_inplace ops like transpose_. See Note [Functionalization
- // Pass - Inplace View Ops]
- void regenerate_from_base();
- // Performs step (2) of the sync. This is its own public API because it's
- // needed by functorch. functorch wants to make sure that all input tensors to
- // a functionalized program have been properly synced so it can properly
- // propagate mutations to inputs. It can't just call sync_(), because the
- // FunctionalTensorWrapper will look like it has no aliases and sync_ will be
- // a noop. We use the reference count on storage_ to determine if the wrapper
- // is aliased, and by the time functorch is ready to propagate updates to
- // inputs, any intermediate views of the input created by the program will
- // have been deallocated. This function also returns whether or not the base
- // actually had any updates to apply.
- bool apply_updates();
- // Takes the current state of value_ and snapshots it, sending it as a pending
- // update to the alias.
- void commit_update();
- // When any tensor is mutated, the tensor increments its alias's "generation".
- // Separately, each tensor maintains its own "generation" counter, which is
- // used to determine if it's up-to-date with its alias. The act of syncing a
- // tensor will set a tensor's generation equal to its alias's generation.
- bool is_up_to_date() const;
- // Freezes the storage of this tensor, preventing subsequent mutations
- void freeze_storage() const;
- // Every FunctionalTensorWrapper contains a vector<ViewMeta> objects
- // describing the series of view ops that ran to generate the current tensor
- // from the base tensor. This method is used by inplace-view ops like
- // transpose_. It appends a ViewMeta to the existing stack, and refreshes the
- // tensor by replaying the views off of the alias.
- void mutate_view_meta(at::functionalization::ViewMeta meta);
- // The functionalization pass can be used to remove mutations.
- // It does so by replacing any mutation op with it's corresponding
- // out-of-place op, followed by a call to replace_(). e.g:
- //
- // a.add_(1)
- //
- // will turn into:
- //
- // tmp = a.add(1)
- // a.replace_(tmp)
- //
- // replace_() swaps out the wrapped tensor, value_, with tmp.
- void replace_(const Tensor& other);
- // See Note[resize_() in functionalization pass]
- void maybe_replace_storage(const Tensor& other);
- c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
- const c10::VariableVersion& version_counter,
- bool allow_tensor_metadata_change) const override;
- c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
- c10::VariableVersion&& version_counter,
- bool allow_tensor_metadata_change) const override;
- ~FunctionalTensorWrapper() override = default;
- // FunctionalTensorWrapper overrides all custom size/stride function,
- // so that if the inner tensor has a custom implementation
- // we make sure to call that implementation.
- at::IntArrayRef sizes_custom() const override;
- at::IntArrayRef strides_custom() const override;
- int64_t dim_custom() const override;
- int64_t numel_custom() const override;
- bool is_contiguous_custom(at::MemoryFormat memory_format) const override;
- c10::SymIntArrayRef sym_sizes_custom() const override;
- c10::SymInt sym_size_custom(int64_t d) const override;
- c10::SymIntArrayRef sym_strides_custom() const override;
- c10::SymInt sym_storage_offset_custom() const override;
- c10::Device device_custom() const override;
- private:
- const char* tensorimpl_type_name() const override;
- void set_constructor_metadata();
- functionalization::FunctionalStorageImpl* functional_storage_impl() const;
- // This is used to re-implement shallow_copy_and_detach for
- // FunctionalTensorWrapper. The implementation is identical, but we just need
- // to return a subclass instead of a plain TensorImpl.
- // TODO: maybe it's possible to arrange for that to happen automatically
- // without an override here?
- template <typename VariableVersion>
- c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach_core(
- VariableVersion&& version_counter,
- bool allow_tensor_metadata_change) const;
- // Note that value is not taken by reference: internally, the wrapper will
- // change the value tensor that it points to over time.
- Tensor value_;
- int64_t level_;
- size_t generation_ = 0;
- std::vector<at::functionalization::ViewMeta> view_metas_;
- };
- // Utility functions for the functionalization pass.
- namespace functionalization {
- namespace impl {
- TORCH_API inline FunctionalTensorWrapper* unsafeGetFunctionalWrapper(
- const Tensor& tensor) {
- auto functional_impl =
- static_cast<FunctionalTensorWrapper*>(tensor.unsafeGetTensorImpl());
- TORCH_INTERNAL_ASSERT_DEBUG_ONLY(functional_impl != nullptr);
- return functional_impl;
- }
- TORCH_API bool isFunctionalTensor(const at::Tensor& tensor);
- TORCH_API bool isFunctionalTensor(const c10::optional<Tensor>& t);
- TORCH_API bool isFunctionalTensor(
- const c10::List<c10::optional<Tensor>>& t_list);
- TORCH_API bool isFunctionalTensor(ITensorListRef list);
- TORCH_API Tensor to_functional_tensor(const Tensor& tensor);
- TORCH_API c10::optional<Tensor> to_functional_tensor(
- const c10::optional<Tensor>& tensor);
- TORCH_API c10::List<c10::optional<Tensor>> to_functional_tensor(
- const c10::List<c10::optional<Tensor>>& t_list);
- TORCH_API std::vector<Tensor> to_functional_tensor(ITensorListRef t_list);
- TORCH_API void freeze_functional_tensor(const Tensor& tensor);
- TORCH_API Tensor
- from_functional_tensor(const Tensor& tensor, bool assert_functional = true);
- TORCH_API c10::optional<Tensor> from_functional_tensor(
- const c10::optional<Tensor>& t,
- bool assert_functional = true);
- TORCH_API c10::List<c10::optional<Tensor>> from_functional_tensor(
- const c10::List<c10::optional<Tensor>>& t_list);
- TORCH_API std::vector<Tensor> from_functional_tensor(ITensorListRef t_list);
- TORCH_API void sync(const at::Tensor& t);
- TORCH_API void sync(const c10::optional<Tensor>& t);
- TORCH_API void sync(const c10::List<c10::optional<Tensor>> t_list);
- TORCH_API void sync(ITensorListRef t_list);
- TORCH_API void replace_(const Tensor& functional_tensor, const Tensor& other);
- TORCH_API void replace_(
- const ITensorListRef functional_tensor,
- ITensorListRef other);
- TORCH_API void commit_update(const Tensor& functional_tensor);
- TORCH_API void commit_update(ITensorListRef functional_tensor);
- Tensor create_functional_tensor_with_view_meta(
- const Tensor& view_to_wrap,
- const Tensor& base,
- functionalization::ViewMeta meta,
- int64_t out_idx = 0);
- std::vector<Tensor> create_functional_tensor_with_view_meta(
- ITensorListRef view_to_wrap,
- const Tensor& base,
- functionalization::ViewMeta meta);
- void mutate_view_meta(const Tensor& self, functionalization::ViewMeta meta);
- void set_sizes_strides_offset(const Tensor& out, const Tensor& meta_out);
- void set_sizes_strides_offset(
- const std::vector<Tensor>& outs,
- const std::vector<Tensor>& meta_outs);
- // ~~~~~ TLS used in functionalization ~~~~~
- TORCH_API bool getFunctionalizationReapplyViewsTLS();
- TORCH_API void setFunctionalizationReapplyViewsTLS(bool reapply_views);
- class TORCH_API FunctionalizationReapplyViewsGuard {
- public:
- FunctionalizationReapplyViewsGuard(bool reapply_views)
- : prev_(getFunctionalizationReapplyViewsTLS()) {
- setFunctionalizationReapplyViewsTLS(reapply_views);
- }
- ~FunctionalizationReapplyViewsGuard() {
- setFunctionalizationReapplyViewsTLS(prev_);
- }
- FunctionalizationReapplyViewsGuard(
- const FunctionalizationReapplyViewsGuard&) = delete;
- FunctionalizationReapplyViewsGuard operator=(
- const FunctionalizationReapplyViewsGuard&) = delete;
- FunctionalizationReapplyViewsGuard(FunctionalizationReapplyViewsGuard&&) =
- delete;
- FunctionalizationReapplyViewsGuard operator=(
- FunctionalizationReapplyViewsGuard&&) = delete;
- private:
- bool prev_;
- };
- } // namespace impl
- // Helper function to call an out-of-place composite aten kernel that may use
- // mutations / views internally, and functionalize them.
- TORCH_API void functionalize_op_helper(
- const c10::OperatorHandle& op,
- torch::jit::Stack* stack);
- template <class Op, bool symint, class ReturnType, class... ParameterTypes>
- struct _functionalize_aten_op final {};
- template <class Op, bool symint, class ReturnType, class... ParameterTypes>
- struct _functionalize_aten_op<Op, symint, ReturnType(ParameterTypes...)> final {
- static ReturnType call(
- typename c10::maybe_keep_symint<symint, ParameterTypes>::type... args) {
- using FuncType = ReturnType(
- typename c10::maybe_keep_symint<symint, ParameterTypes>::type...);
- auto op = c10::Dispatcher::singleton()
- .findSchemaOrThrow(
- (const char*)Op::name, (const char*)Op::overload_name)
- .typed<FuncType>();
- return c10::impl::BoxedKernelWrapper<FuncType>::call(
- c10::BoxedKernel::makeFromFunction<functionalize_op_helper>(),
- op,
- // BoxedKernelWrapper knows to ignore this keyset argument,
- // because functionalize_op_helper doesn't take in a DispatchKeySet
- c10::DispatchKeySet(),
- args...);
- }
- };
- template <class Op>
- using functionalize_aten_op =
- _functionalize_aten_op<Op, false, typename Op::schema>;
- template <class Op>
- using functionalize_aten_op_symint =
- _functionalize_aten_op<Op, true, typename Op::schema>;
- } // namespace functionalization
- } // namespace at
|