1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- import torch
- from torch.fx.passes.infra.partitioner import CapabilityBasedPartitioner
- from torch.fx.passes.operator_support import OperatorSupport
- from torch.fx.passes.tools_common import CALLABLE_NODE_OPS
- from torch.fx.passes.fake_tensor_prop import FakeTensorProp
- from torch.utils._pytree import tree_map
- import operator
- class CudaGraphsSupport(OperatorSupport):
- # TODO: why is submodules passed here
- def is_node_supported(self, submodules, node: torch.fx.Node) -> bool:
- if node.op not in CALLABLE_NODE_OPS:
- return False
- if node.target in [torch.ops.aten.embedding_dense_backward.default]:
- return False
- if node.target in [operator.getitem]:
- return True
- found_not_cuda = False
- def meta_fk(meta):
- return meta["val"] if "val" in meta else meta["fake_result"]
- def find_not_cuda(t):
- nonlocal found_not_cuda
- if isinstance(t, torch.Tensor) and t.device.type != 'cuda':
- found_not_cuda = True
- for n in node.all_input_nodes:
- tree_map(find_not_cuda, meta_fk(n.meta))
- tree_map(find_not_cuda, meta_fk(node.meta))
- # NB: factory function is accounted for because the result would be
- # cpu or cuda
- return not found_not_cuda
- def partition_cudagraphs(gm, inputs):
- """
- Partition an FX graph into sub-GraphModules that can be validly run under
- CUDA graphs. For a subgraph to be runnable under CUDA, all of the operations
- must involve CUDA tensors only/
- """
- FakeTensorProp(gm).propagate(*inputs)
- supported_ops = CudaGraphsSupport()
- # TODO: single node partition may be wrong due to the pessimization
- # from copying in and out the data. Check in benchmarks, perhaps
- partitioner = CapabilityBasedPartitioner(gm, supported_ops, allows_single_node_partition=True)
- partitions = partitioner.propose_partitions()
- fused_graph = partitioner.fuse_partitions(partitions)
- return fused_graph
|