123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147 |
- import math
- import torch
- import torch.jit
- from torch.distributions import constraints
- from torch.distributions.distribution import Distribution
- from torch.distributions.utils import broadcast_all, lazy_property
- __all__ = ['VonMises']
- def _eval_poly(y, coef):
- coef = list(coef)
- result = coef.pop()
- while coef:
- result = coef.pop() + y * result
- return result
- _I0_COEF_SMALL = [1.0, 3.5156229, 3.0899424, 1.2067492, 0.2659732, 0.360768e-1, 0.45813e-2]
- _I0_COEF_LARGE = [0.39894228, 0.1328592e-1, 0.225319e-2, -0.157565e-2, 0.916281e-2,
- -0.2057706e-1, 0.2635537e-1, -0.1647633e-1, 0.392377e-2]
- _I1_COEF_SMALL = [0.5, 0.87890594, 0.51498869, 0.15084934, 0.2658733e-1, 0.301532e-2, 0.32411e-3]
- _I1_COEF_LARGE = [0.39894228, -0.3988024e-1, -0.362018e-2, 0.163801e-2, -0.1031555e-1,
- 0.2282967e-1, -0.2895312e-1, 0.1787654e-1, -0.420059e-2]
- _COEF_SMALL = [_I0_COEF_SMALL, _I1_COEF_SMALL]
- _COEF_LARGE = [_I0_COEF_LARGE, _I1_COEF_LARGE]
- def _log_modified_bessel_fn(x, order=0):
- """
- Returns ``log(I_order(x))`` for ``x > 0``,
- where `order` is either 0 or 1.
- """
- assert order == 0 or order == 1
- # compute small solution
- y = (x / 3.75)
- y = y * y
- small = _eval_poly(y, _COEF_SMALL[order])
- if order == 1:
- small = x.abs() * small
- small = small.log()
- # compute large solution
- y = 3.75 / x
- large = x - 0.5 * x.log() + _eval_poly(y, _COEF_LARGE[order]).log()
- result = torch.where(x < 3.75, small, large)
- return result
- @torch.jit.script_if_tracing
- def _rejection_sample(loc, concentration, proposal_r, x):
- done = torch.zeros(x.shape, dtype=torch.bool, device=loc.device)
- while not done.all():
- u = torch.rand((3,) + x.shape, dtype=loc.dtype, device=loc.device)
- u1, u2, u3 = u.unbind()
- z = torch.cos(math.pi * u1)
- f = (1 + proposal_r * z) / (proposal_r + z)
- c = concentration * (proposal_r - f)
- accept = ((c * (2 - c) - u2) > 0) | ((c / u2).log() + 1 - c >= 0)
- if accept.any():
- x = torch.where(accept, (u3 - 0.5).sign() * f.acos(), x)
- done = done | accept
- return (x + math.pi + loc) % (2 * math.pi) - math.pi
- class VonMises(Distribution):
- """
- A circular von Mises distribution.
- This implementation uses polar coordinates. The ``loc`` and ``value`` args
- can be any real number (to facilitate unconstrained optimization), but are
- interpreted as angles modulo 2 pi.
- Example::
- >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
- >>> m = VonMises(torch.tensor([1.0]), torch.tensor([1.0]))
- >>> m.sample() # von Mises distributed with loc=1 and concentration=1
- tensor([1.9777])
- :param torch.Tensor loc: an angle in radians.
- :param torch.Tensor concentration: concentration parameter
- """
- arg_constraints = {'loc': constraints.real, 'concentration': constraints.positive}
- support = constraints.real
- has_rsample = False
- def __init__(self, loc, concentration, validate_args=None):
- self.loc, self.concentration = broadcast_all(loc, concentration)
- batch_shape = self.loc.shape
- event_shape = torch.Size()
- # Parameters for sampling
- tau = 1 + (1 + 4 * self.concentration ** 2).sqrt()
- rho = (tau - (2 * tau).sqrt()) / (2 * self.concentration)
- self._proposal_r = (1 + rho ** 2) / (2 * rho)
- super().__init__(batch_shape, event_shape, validate_args)
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- log_prob = self.concentration * torch.cos(value - self.loc)
- log_prob = log_prob - math.log(2 * math.pi) - _log_modified_bessel_fn(self.concentration, order=0)
- return log_prob
- @torch.no_grad()
- def sample(self, sample_shape=torch.Size()):
- """
- The sampling algorithm for the von Mises distribution is based on the following paper:
- Best, D. J., and Nicholas I. Fisher.
- "Efficient simulation of the von Mises distribution." Applied Statistics (1979): 152-157.
- """
- shape = self._extended_shape(sample_shape)
- x = torch.empty(shape, dtype=self.loc.dtype, device=self.loc.device)
- return _rejection_sample(self.loc, self.concentration, self._proposal_r, x)
- def expand(self, batch_shape):
- try:
- return super().expand(batch_shape)
- except NotImplementedError:
- validate_args = self.__dict__.get('_validate_args')
- loc = self.loc.expand(batch_shape)
- concentration = self.concentration.expand(batch_shape)
- return type(self)(loc, concentration, validate_args=validate_args)
- @property
- def mean(self):
- """
- The provided mean is the circular one.
- """
- return self.loc
- @property
- def mode(self):
- return self.loc
- @lazy_property
- def variance(self):
- """
- The provided variance is the circular one.
- """
- return 1 - (_log_modified_bessel_fn(self.concentration, order=1) -
- _log_modified_bessel_fn(self.concentration, order=0)).exp()
|