123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- import math
- from numbers import Real
- from numbers import Number
- import torch
- from torch.distributions import constraints
- from torch.distributions.exp_family import ExponentialFamily
- from torch.distributions.utils import _standard_normal, broadcast_all
- __all__ = ['Normal']
- class Normal(ExponentialFamily):
- r"""
- Creates a normal (also called Gaussian) distribution parameterized by
- :attr:`loc` and :attr:`scale`.
- Example::
- >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
- >>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0]))
- >>> m.sample() # normally distributed with loc=0 and scale=1
- tensor([ 0.1046])
- Args:
- loc (float or Tensor): mean of the distribution (often referred to as mu)
- scale (float or Tensor): standard deviation of the distribution
- (often referred to as sigma)
- """
- arg_constraints = {'loc': constraints.real, 'scale': constraints.positive}
- support = constraints.real
- has_rsample = True
- _mean_carrier_measure = 0
- @property
- def mean(self):
- return self.loc
- @property
- def mode(self):
- return self.loc
- @property
- def stddev(self):
- return self.scale
- @property
- def variance(self):
- return self.stddev.pow(2)
- def __init__(self, loc, scale, validate_args=None):
- self.loc, self.scale = broadcast_all(loc, scale)
- if isinstance(loc, Number) and isinstance(scale, Number):
- batch_shape = torch.Size()
- else:
- batch_shape = self.loc.size()
- super().__init__(batch_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(Normal, _instance)
- batch_shape = torch.Size(batch_shape)
- new.loc = self.loc.expand(batch_shape)
- new.scale = self.scale.expand(batch_shape)
- super(Normal, new).__init__(batch_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- def sample(self, sample_shape=torch.Size()):
- shape = self._extended_shape(sample_shape)
- with torch.no_grad():
- return torch.normal(self.loc.expand(shape), self.scale.expand(shape))
- def rsample(self, sample_shape=torch.Size()):
- shape = self._extended_shape(sample_shape)
- eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device)
- return self.loc + eps * self.scale
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- # compute the variance
- var = (self.scale ** 2)
- log_scale = math.log(self.scale) if isinstance(self.scale, Real) else self.scale.log()
- return -((value - self.loc) ** 2) / (2 * var) - log_scale - math.log(math.sqrt(2 * math.pi))
- def cdf(self, value):
- if self._validate_args:
- self._validate_sample(value)
- return 0.5 * (1 + torch.erf((value - self.loc) * self.scale.reciprocal() / math.sqrt(2)))
- def icdf(self, value):
- return self.loc + self.scale * torch.erfinv(2 * value - 1) * math.sqrt(2)
- def entropy(self):
- return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.scale)
- @property
- def _natural_params(self):
- return (self.loc / self.scale.pow(2), -0.5 * self.scale.pow(2).reciprocal())
- def _log_normalizer(self, x, y):
- return -0.25 * x.pow(2) / y + 0.5 * torch.log(-math.pi / y)
|