123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- import torch
- from torch import inf
- from torch.distributions.binomial import Binomial
- from torch.distributions.distribution import Distribution
- from torch.distributions import Categorical
- from torch.distributions import constraints
- from torch.distributions.utils import broadcast_all
- __all__ = ['Multinomial']
- class Multinomial(Distribution):
- r"""
- Creates a Multinomial distribution parameterized by :attr:`total_count` and
- either :attr:`probs` or :attr:`logits` (but not both). The innermost dimension of
- :attr:`probs` indexes over categories. All other dimensions index over batches.
- Note that :attr:`total_count` need not be specified if only :meth:`log_prob` is
- called (see example below)
- .. note:: The `probs` argument must be non-negative, finite and have a non-zero sum,
- and it will be normalized to sum to 1 along the last dimension. :attr:`probs`
- will return this normalized value.
- The `logits` argument will be interpreted as unnormalized log probabilities
- and can therefore be any real number. It will likewise be normalized so that
- the resulting probabilities sum to 1 along the last dimension. :attr:`logits`
- will return this normalized value.
- - :meth:`sample` requires a single shared `total_count` for all
- parameters and samples.
- - :meth:`log_prob` allows different `total_count` for each parameter and
- sample.
- Example::
- >>> # xdoctest: +SKIP("FIXME: found invalid values")
- >>> m = Multinomial(100, torch.tensor([ 1., 1., 1., 1.]))
- >>> x = m.sample() # equal probability of 0, 1, 2, 3
- tensor([ 21., 24., 30., 25.])
- >>> Multinomial(probs=torch.tensor([1., 1., 1., 1.])).log_prob(x)
- tensor([-4.1338])
- Args:
- total_count (int): number of trials
- probs (Tensor): event probabilities
- logits (Tensor): event log probabilities (unnormalized)
- """
- arg_constraints = {'probs': constraints.simplex,
- 'logits': constraints.real_vector}
- total_count: int
- @property
- def mean(self):
- return self.probs * self.total_count
- @property
- def variance(self):
- return self.total_count * self.probs * (1 - self.probs)
- def __init__(self, total_count=1, probs=None, logits=None, validate_args=None):
- if not isinstance(total_count, int):
- raise NotImplementedError('inhomogeneous total_count is not supported')
- self.total_count = total_count
- self._categorical = Categorical(probs=probs, logits=logits)
- self._binomial = Binomial(total_count=total_count, probs=self.probs)
- batch_shape = self._categorical.batch_shape
- event_shape = self._categorical.param_shape[-1:]
- super().__init__(batch_shape, event_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(Multinomial, _instance)
- batch_shape = torch.Size(batch_shape)
- new.total_count = self.total_count
- new._categorical = self._categorical.expand(batch_shape)
- super(Multinomial, new).__init__(batch_shape, self.event_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- def _new(self, *args, **kwargs):
- return self._categorical._new(*args, **kwargs)
- @constraints.dependent_property(is_discrete=True, event_dim=1)
- def support(self):
- return constraints.multinomial(self.total_count)
- @property
- def logits(self):
- return self._categorical.logits
- @property
- def probs(self):
- return self._categorical.probs
- @property
- def param_shape(self):
- return self._categorical.param_shape
- def sample(self, sample_shape=torch.Size()):
- sample_shape = torch.Size(sample_shape)
- samples = self._categorical.sample(torch.Size((self.total_count,)) + sample_shape)
- # samples.shape is (total_count, sample_shape, batch_shape), need to change it to
- # (sample_shape, batch_shape, total_count)
- shifted_idx = list(range(samples.dim()))
- shifted_idx.append(shifted_idx.pop(0))
- samples = samples.permute(*shifted_idx)
- counts = samples.new(self._extended_shape(sample_shape)).zero_()
- counts.scatter_add_(-1, samples, torch.ones_like(samples))
- return counts.type_as(self.probs)
- def entropy(self):
- n = torch.tensor(self.total_count)
- cat_entropy = self._categorical.entropy()
- term1 = n * cat_entropy - torch.lgamma(n + 1)
- support = self._binomial.enumerate_support(expand=False)[1:]
- binomial_probs = torch.exp(self._binomial.log_prob(support))
- weights = torch.lgamma(support + 1)
- term2 = (binomial_probs * weights).sum([0, -1])
- return term1 + term2
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- logits, value = broadcast_all(self.logits, value)
- logits = logits.clone(memory_format=torch.contiguous_format)
- log_factorial_n = torch.lgamma(value.sum(-1) + 1)
- log_factorial_xs = torch.lgamma(value + 1).sum(-1)
- logits[(value == 0) & (logits == -inf)] = 0
- log_powers = (logits * value).sum(-1)
- return log_factorial_n - log_factorial_xs + log_powers
|