123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- import torch
- from torch.autograd import Function
- from torch.autograd.function import once_differentiable
- from torch.distributions import constraints
- from torch.distributions.exp_family import ExponentialFamily
- __all__ = ['Dirichlet']
- # This helper is exposed for testing.
- def _Dirichlet_backward(x, concentration, grad_output):
- total = concentration.sum(-1, True).expand_as(concentration)
- grad = torch._dirichlet_grad(x, concentration, total)
- return grad * (grad_output - (x * grad_output).sum(-1, True))
- class _Dirichlet(Function):
- @staticmethod
- def forward(ctx, concentration):
- x = torch._sample_dirichlet(concentration)
- ctx.save_for_backward(x, concentration)
- return x
- @staticmethod
- @once_differentiable
- def backward(ctx, grad_output):
- x, concentration = ctx.saved_tensors
- return _Dirichlet_backward(x, concentration, grad_output)
- class Dirichlet(ExponentialFamily):
- r"""
- Creates a Dirichlet distribution parameterized by concentration :attr:`concentration`.
- Example::
- >>> # xdoctest: +IGNORE_WANT("non-deterinistic")
- >>> m = Dirichlet(torch.tensor([0.5, 0.5]))
- >>> m.sample() # Dirichlet distributed with concentration [0.5, 0.5]
- tensor([ 0.1046, 0.8954])
- Args:
- concentration (Tensor): concentration parameter of the distribution
- (often referred to as alpha)
- """
- arg_constraints = {'concentration': constraints.independent(constraints.positive, 1)}
- support = constraints.simplex
- has_rsample = True
- def __init__(self, concentration, validate_args=None):
- if concentration.dim() < 1:
- raise ValueError("`concentration` parameter must be at least one-dimensional.")
- self.concentration = concentration
- batch_shape, event_shape = concentration.shape[:-1], concentration.shape[-1:]
- super().__init__(batch_shape, event_shape, validate_args=validate_args)
- def expand(self, batch_shape, _instance=None):
- new = self._get_checked_instance(Dirichlet, _instance)
- batch_shape = torch.Size(batch_shape)
- new.concentration = self.concentration.expand(batch_shape + self.event_shape)
- super(Dirichlet, new).__init__(batch_shape, self.event_shape, validate_args=False)
- new._validate_args = self._validate_args
- return new
- def rsample(self, sample_shape=()):
- shape = self._extended_shape(sample_shape)
- concentration = self.concentration.expand(shape)
- return _Dirichlet.apply(concentration)
- def log_prob(self, value):
- if self._validate_args:
- self._validate_sample(value)
- return ((torch.log(value) * (self.concentration - 1.0)).sum(-1) +
- torch.lgamma(self.concentration.sum(-1)) -
- torch.lgamma(self.concentration).sum(-1))
- @property
- def mean(self):
- return self.concentration / self.concentration.sum(-1, True)
- @property
- def mode(self):
- concentrationm1 = (self.concentration - 1).clamp(min=0.)
- mode = concentrationm1 / concentrationm1.sum(-1, True)
- mask = (self.concentration < 1).all(axis=-1)
- mode[mask] = torch.nn.functional.one_hot(mode[mask].argmax(axis=-1), concentrationm1.shape[-1]).to(mode)
- return mode
- @property
- def variance(self):
- con0 = self.concentration.sum(-1, True)
- return self.concentration * (con0 - self.concentration) / (con0.pow(2) * (con0 + 1))
- def entropy(self):
- k = self.concentration.size(-1)
- a0 = self.concentration.sum(-1)
- return (torch.lgamma(self.concentration).sum(-1) - torch.lgamma(a0) -
- (k - a0) * torch.digamma(a0) -
- ((self.concentration - 1.0) * torch.digamma(self.concentration)).sum(-1))
- @property
- def _natural_params(self):
- return (self.concentration, )
- def _log_normalizer(self, x):
- return x.lgamma().sum(-1) - torch.lgamma(x.sum(-1))
|