123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- from typing import Any, Dict, List, Tuple
- import torch
- import torch.distributed as dist
- from torch.nn.parallel._functions import _get_stream
- from torch.nn.parallel.scatter_gather import ( # type: ignore[attr-defined]
- _is_namedtuple,
- )
- from torch.nn.utils.rnn import PackedSequence
- __all__ = [] # type: ignore[var-annotated]
- def _pack_kwargs(*args: Any, **kwargs: Any) -> Tuple[Tuple[Any, ...], Tuple[str, ...]]:
- """
- Turn argument list into separate key list and value list (unpack_kwargs does the opposite)
- Inspiration: https://github.com/facebookresearch/fairscale/blob/eeb6684/fairscale/internal/containers.py#L70
- Usage::
- kwarg_keys, flat_args = pack_kwargs(1, 2, a=3, b=4)
- assert kwarg_keys == ("a", "b")
- assert flat_args == (1, 2, 3, 4)
- args, kwargs = unpack_kwargs(kwarg_keys, flat_args)
- assert args == (1, 2)
- assert kwargs == {"a": 3, "b": 4}
- Returns:
- Tuple[Tuple[Any, ...], Tuple[str, ...]]: The first tuple element gives
- gives both positional args and kwarg values, where the positional args
- proceed kwarg values and kwarg values are ordered consistently with the
- kwarg keys. The second tuple element gives the kwarg keys.
- The second tuple element's length is at most the first tuple element's length.
- """
- kwarg_keys: List[str] = []
- flat_args: List[Any] = list(args)
- for k, v in kwargs.items():
- kwarg_keys.append(k)
- flat_args.append(v)
- return tuple(flat_args), tuple(kwarg_keys)
- def _unpack_kwargs(flat_args: Tuple[Any, ...], kwarg_keys: Tuple[str, ...]) -> Tuple[Tuple[Any, ...], Dict[str, Any]]:
- """See _pack_kwargs."""
- assert len(kwarg_keys) <= len(flat_args), f"too many keys {len(kwarg_keys)} vs. {len(flat_args)}"
- if len(kwarg_keys) == 0:
- return flat_args, {}
- args = flat_args[: -len(kwarg_keys)]
- kwargs = {k: v for k, v in zip(kwarg_keys, flat_args[-len(kwarg_keys) :])}
- return args, kwargs
- def _recursive_to(inputs, target_gpu, use_side_stream_for_tensor_copies):
- r"""
- Recursively moves input to the target_gpu.
- """
- def to_map(obj):
- if isinstance(obj, (torch.Tensor, PackedSequence)):
- device = obj.data.device if isinstance(obj, PackedSequence) else obj.device
- if device == torch.device("cuda", target_gpu):
- return (obj,)
- if not use_side_stream_for_tensor_copies:
- return (obj.to(target_gpu),)
- else:
- # Perform CPU -> GPU copies in a background stream. This code is
- # motivated from similar logic in torch/nn/parallel/_functions.py
- stream = _get_stream(target_gpu)
- with torch.cuda.stream(stream):
- output = obj.to(target_gpu)
- # synchronize with the copy stream
- with torch.cuda.device(target_gpu):
- current_stream = torch.cuda.current_stream()
- # Sync the current stream with the copy stream
- current_stream.wait_stream(stream)
- # Ensure tensor memory is not reused until work on
- # main stream is complete
- if isinstance(obj, PackedSequence):
- output.data.record_stream(current_stream) # type: ignore[arg-type]
- else:
- output.record_stream(current_stream) # type: ignore[arg-type]
- return (output,)
- if _is_namedtuple(obj):
- return [type(obj)(*args) for args in zip(*map(to_map, obj))]
- if isinstance(obj, tuple) and len(obj) > 0:
- return list(zip(*map(to_map, obj)))
- if isinstance(obj, list) and len(obj) > 0:
- return [list(i) for i in zip(*map(to_map, obj))]
- if isinstance(obj, dict) and len(obj) > 0:
- return [type(obj)(i) for i in zip(*map(to_map, obj.items()))]
- return [obj]
- # Avoid reference cycle
- try:
- res = to_map(inputs)
- finally:
- to_map = None # type: ignore[assignment]
- return res
- def _to_kwargs(inputs, kwargs, device_id, use_side_stream_for_tensor_copies):
- inputs = (
- _recursive_to(inputs, device_id, use_side_stream_for_tensor_copies)
- if inputs
- else []
- )
- kwargs = (
- _recursive_to(kwargs, device_id, use_side_stream_for_tensor_copies)
- if kwargs
- else []
- )
- if len(inputs) < len(kwargs):
- inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
- elif len(kwargs) < len(inputs):
- kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
- inputs = tuple(inputs)
- kwargs = tuple(kwargs)
- return inputs, kwargs
- def _verify_param_shape_across_processes(process_group, tensors, logger=None):
- return dist._verify_params_across_processes(process_group, tensors, logger)
- def _sync_module_states(
- module,
- process_group,
- broadcast_bucket_size,
- src,
- params_and_buffers_to_ignore,
- ):
- """
- Syncs ``module``'s parameters and buffers state so that all ranks contain
- the same module state across all ranks. Note that this API assumes that all
- parameter shapes are consistent before running the synchronization. This can
- be checked with ``_verify_param_shape_across_processes``.
- """
- module_states = []
- for name, param in module.named_parameters():
- if name not in params_and_buffers_to_ignore:
- module_states.append(param.detach())
- for name, buffer in module.named_buffers():
- if name not in params_and_buffers_to_ignore:
- module_states.append(buffer.detach())
- _sync_params_and_buffers(
- process_group,
- module_states,
- broadcast_bucket_size,
- src
- )
- def _sync_params_and_buffers(
- process_group: dist.ProcessGroup,
- module_states: List[torch.Tensor],
- broadcast_bucket_size: int,
- src: int,
- ):
- """
- Synchronizes ``module_states`` (list of tensors) across all processes by
- broadcasting them from rank 0.
- """
- if len(module_states) > 0:
- dist._broadcast_coalesced(
- process_group, module_states, broadcast_bucket_size, src
- )
- def _replace_by_prefix(
- state_dict: Dict[str, Any],
- old_prefix: str,
- new_prefix: str,
- ) -> None:
- """
- Replace all keys that match a given old_prefix with a new_prefix (in-place).
- Usage::
- state_dict = {"layer.xyz": torch.tensor(1)}
- replace_by_prefix_(state_dict, "layer.", "module.layer.")
- assert state_dict == {"module.layer.xyz": torch.tensor(1)}
- """
- if old_prefix == new_prefix:
- raise ValueError("old_prefix and new_prefix must be distinct")
- for key in list(state_dict.keys()):
- if not key.startswith(old_prefix):
- continue
- new_key = new_prefix + key[len(old_prefix) :]
- state_dict[new_key] = state_dict[key]
- del state_dict[key]
|