123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- import warnings
- import torch
- import torch.distributed.algorithms.model_averaging.averagers as averagers
- class PostLocalSGDOptimizer(torch.optim.Optimizer):
- r"""
- Wraps an arbitrary :class:`torch.optim.Optimizer` and runs `post-local SGD <https://arxiv.org/abs/1808.07217>`_,
- This optimizer runs local optimizer at every step.
- After the warm-up stage, it averages parameters periodically afer the local optimizer is applied.
- Args:
- optim: The local optimizer.
- averager: A model averager instance to run post-localSGD algorithm.
- Example::
- >>> # xdoctest: +SKIP("undefined variables")
- >>> import torch
- >>> import torch.distributed as dist
- >>> import torch.distributed.algorithms.model_averaging.averagers as averagers
- >>> import torch.nn as nn
- >>> from torch.distributed.optim import PostLocalSGDOptimizer
- >>> from torch.distributed.algorithms.ddp_comm_hooks.post_localSGD_hook import (
- >>> PostLocalSGDState,
- >>> post_localSGD_hook,
- >>> )
- >>>
- >>> model = nn.parallel.DistributedDataParallel(
- >>> module, device_ids=[rank], output_device=rank
- >>> )
- >>>
- >>> # Register a post-localSGD communication hook.
- >>> state = PostLocalSGDState(process_group=None, subgroup=None, start_localSGD_iter=100)
- >>> model.register_comm_hook(state, post_localSGD_hook)
- >>>
- >>> # Create a post-localSGD optimizer that wraps a local optimizer.
- >>> # Note that ``warmup_steps`` used in ``PostLocalSGDOptimizer`` must be the same as
- >>> # ``start_localSGD_iter`` used in ``PostLocalSGDState``.
- >>> local_optim = torch.optim.SGD(params=model.parameters(), lr=0.01)
- >>> opt = PostLocalSGDOptimizer(
- >>> optim=local_optim,
- >>> averager=averagers.PeriodicModelAverager(period=4, warmup_steps=100)
- >>> )
- >>>
- >>> # In the first 100 steps, DDP runs global gradient averaging at every step.
- >>> # After 100 steps, DDP runs gradient averaging within each subgroup (intra-node by default),
- >>> # and post-localSGD optimizer runs global model averaging every 4 steps after applying the local optimizer.
- >>> for step in range(0, 200):
- >>> opt.zero_grad()
- >>> loss = loss_fn(output, labels)
- >>> loss.backward()
- >>> opt.step()
- """
- def __init__(self, optim: torch.optim.Optimizer, averager: averagers.ModelAverager):
- self.optim = optim
- self.param_groups = self.optim.param_groups
- self.averager = averager
- @property
- def state(self):
- return self.optim.state
- def __repr__(self):
- return self.optim.__repr__()
- def state_dict(self):
- r"""
- This is the same as :class:`torch.optim.Optimizer` :meth:`state_dict`,
- but adds an extra entry to record model averager's step to the checkpoint
- to ensure reload does not cause unnecessary warm up again.
- """
- optim_state_dict = self.optim.state_dict()
- optim_state_dict["step"] = self.averager.step
- return optim_state_dict
- def load_state_dict(self, state_dict):
- r"""
- This is the same as :class:`torch.optim.Optimizer` :meth:`load_state_dict`,
- but also restores model averager's step value to the one
- saved in the provided ``state_dict``.
- If there is no ``"step"`` entry in ``state_dict``,
- it will raise a warning and initialize the model averager's step to 0.
- """
- self.optim.load_state_dict(state_dict)
- if "step" in state_dict:
- self.averager.step = state_dict["step"]
- else:
- warnings.warn(
- "Loaded state dict does not contain a step counter for an averager. "
- "Setting step counter to 0."
- )
- self.averager.step = 0
- def step(self):
- r"""
- Performs a single optimization step (parameter update).
- """
- self.optim.step()
- self.averager.average_parameters(params=self.param_groups)
- def zero_grad(self, set_to_none: bool = True): # type: ignore[override]
- self.optim.zero_grad(set_to_none=set_to_none)
- def add_param_group(self, param_group):
- self.optim.add_param_group(param_group)
|