12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697 |
- from typing import Dict, List, Optional, Tuple
- import torch
- import torch.optim._functional as F
- from torch import Tensor
- __all__: List[str] = []
- # Define a TorchScript compatible Functional Rprop Optimizer
- # where we use these optimizer in a functional way.
- # Instead of using the `param.grad` when updating parameters,
- # we explicitly allow the distributed optimizer pass gradients to
- # the `step` function. In this way, we could separate the gradients
- # and parameters and allow multithreaded trainer to update the
- # parameters without data traces on accumulating to the same .grad.
- # NOTE: This should be only used by distributed optimizer internals
- # and not meant to expose to the user.
- @torch.jit.script
- class _FunctionalRprop:
- def __init__(
- self,
- params: List[Tensor],
- lr: float = 1e-2,
- etas: Tuple[float, float] = (0.5, 1.2),
- step_sizes: Tuple[float, float] = (1e-6, 50),
- foreach: bool = False,
- maximize: bool = False,
- _allow_empty_param_list: bool = False,
- ):
- self.defaults = {
- "lr": lr,
- }
- self.etas = etas
- self.step_sizes = step_sizes
- self.foreach = foreach
- self.maximize = maximize
- if len(params) == 0 and not _allow_empty_param_list:
- raise ValueError("optimizer got an empty parameter list")
- # NOTE: we only have one param_group and don't allow user to add additional
- # param group as it's not a common use case.
- self.param_group = {"params": params}
- self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
- def step(self, gradients: List[Optional[Tensor]]):
- params = self.param_group["params"]
- params_with_grad = []
- grads = []
- prevs = []
- step_sizes = []
- lr = self.defaults["lr"]
- etaminus, etaplus = self.etas
- step_size_min, step_size_max = self.step_sizes
- if len(params) != len(gradients):
- raise ValueError(
- "the gradients passed in does not equal to the size of the parameters!"
- + f"Params length: {len(params)}. "
- + f"Gradients length: {len(gradients)}"
- )
- for param, gradient in zip(params, gradients):
- if gradient is not None:
- params_with_grad.append(param)
- grads.append(gradient)
- # Lazy state initialization
- if param not in self.state:
- self.state[param] = {}
- state = self.state[param]
- state["step"] = torch.tensor(0.0)
- state["prev"] = torch.zeros_like(
- param, memory_format=torch.preserve_format
- )
- state["step_size"] = torch.full_like(gradient, lr)
- state = self.state[param]
- prevs.append(state["prev"])
- step_sizes.append(state["step_size"])
- state["step"] += 1
- with torch.no_grad():
- F.rprop(
- params_with_grad,
- grads,
- prevs,
- step_sizes,
- step_size_min=step_size_min,
- step_size_max=step_size_max,
- etaminus=etaminus,
- etaplus=etaplus,
- foreach=self.foreach,
- maximize=self.maximize,
- )
|