123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- from typing import Dict, List, Optional, Tuple
- import torch
- import torch.optim._functional as F
- from torch import Tensor
- __all__: List[str] = []
- # Define a TorchScript compatible Functional AdamW Optimizer
- # where we use these optimizer in a functional way.
- # Instead of using the `param.grad` when updating parameters,
- # we explicitly allow the distributed optimizer pass gradients to
- # the `step` function. In this way, we could separate the gradients
- # and parameters and allow multithreaded trainer to update the
- # parameters without data traces on accumulating to the same .grad.
- # NOTE: This should be only used by distributed optimizer internals
- # and not meant to expose to the user.
- @torch.jit.script
- class _FunctionalAdamW:
- def __init__(
- self,
- params: List[Tensor],
- lr: float = 1e-3,
- betas: Tuple[float, float] = (0.9, 0.999),
- eps: float = 1e-8,
- weight_decay: float = 1e-2,
- amsgrad: bool = False,
- maximize: bool = False,
- foreach: bool = False,
- fused: bool = False,
- _allow_empty_param_list: bool = False,
- ):
- if not 0.0 <= lr:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if not 0.0 <= eps:
- raise ValueError("Invalid epsilon value: {}".format(eps))
- if not 0.0 <= betas[0] < 1.0:
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
- if not 0.0 <= betas[1] < 1.0:
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
- if not 0.0 <= weight_decay:
- raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
- self.defaults = {
- "lr": lr,
- "eps": eps,
- "beta1": betas[0],
- "beta2": betas[1],
- "weight_decay": weight_decay,
- }
- self.amsgrad = amsgrad
- self.maximize = maximize
- self.foreach = foreach
- self.fused = fused
- self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
- if len(params) == 0 and not _allow_empty_param_list:
- raise ValueError("optimizer got an empty parameter list")
- # NOTE: we only have one param_group and don't allow user to add additional
- # param group as it's not a common use case.
- self.param_group = {"params": params}
- def step_param(self, param: Tensor, grad: Optional[Tensor]):
- params_with_grad = []
- grads = []
- exp_avgs = []
- exp_avg_sqs = []
- max_exp_avg_sqs = []
- state_steps: List[Tensor] = []
- if grad is not None:
- params_with_grad.append(param)
- grads.append(grad)
- # Lazy state initialization
- if param not in self.state:
- self.state[param] = {}
- state = self.state[param]
- state["step"] = torch.tensor(0.0)
- # Exponential moving average of gradient values
- state["exp_avg"] = torch.zeros_like(
- param, memory_format=torch.preserve_format
- )
- # Exponential moving average of squared gradient values
- state["exp_avg_sq"] = torch.zeros_like(
- param, memory_format=torch.preserve_format
- )
- if self.amsgrad:
- # Maintains max of all exp. moving avg. of sq. grad. values
- state["max_exp_avg_sq"] = torch.zeros_like(
- param, memory_format=torch.preserve_format
- )
- state = self.state[param]
- exp_avgs.append(state["exp_avg"])
- exp_avg_sqs.append(state["exp_avg_sq"])
- if self.amsgrad:
- max_exp_avg_sqs.append(state["max_exp_avg_sq"])
- state_steps.append(state["step"])
- with torch.no_grad():
- F.adamw(
- params_with_grad,
- grads,
- exp_avgs,
- exp_avg_sqs,
- max_exp_avg_sqs,
- state_steps,
- amsgrad=self.amsgrad,
- maximize=self.maximize,
- beta1=self.defaults["beta1"],
- beta2=self.defaults["beta2"],
- lr=self.defaults["lr"],
- weight_decay=self.defaults["weight_decay"],
- eps=self.defaults["eps"],
- foreach=self.foreach,
- fused=self.fused,
- grad_scale=None,
- found_inf=None,
- )
- def step(self, gradients: List[Optional[Tensor]]):
- params = self.param_group["params"]
- params_with_grad = []
- grads = []
- exp_avgs = []
- exp_avg_sqs = []
- max_exp_avg_sqs = []
- state_steps: List[Tensor] = []
- if len(params) != len(gradients):
- raise ValueError(
- "the gradients passed in does not equal to the size of the parameters!"
- + f"Params length: {len(params)}. "
- + f"Gradients length: {len(gradients)}"
- )
- for param, gradient in zip(self.param_group["params"], gradients):
- if gradient is not None:
- params_with_grad.append(param)
- grads.append(gradient)
- # Lazy state initialization
- if param not in self.state:
- self.state[param] = {}
- state = self.state[param]
- state["step"] = torch.tensor(0.0)
- # Exponential moving average of gradient values
- state["exp_avg"] = torch.zeros_like(
- param, memory_format=torch.preserve_format
- )
- # Exponential moving average of squared gradient values
- state["exp_avg_sq"] = torch.zeros_like(
- param, memory_format=torch.preserve_format
- )
- if self.amsgrad:
- # Maintains max of all exp. moving avg. of sq. grad. values
- state["max_exp_avg_sq"] = torch.zeros_like(
- param, memory_format=torch.preserve_format
- )
- state = self.state[param]
- exp_avgs.append(state["exp_avg"])
- exp_avg_sqs.append(state["exp_avg_sq"])
- if self.amsgrad:
- max_exp_avg_sqs.append(state["max_exp_avg_sq"])
- state_steps.append(state["step"])
- with torch.no_grad():
- F.adamw(
- params_with_grad,
- grads,
- exp_avgs,
- exp_avg_sqs,
- max_exp_avg_sqs,
- state_steps,
- amsgrad=self.amsgrad,
- maximize=self.maximize,
- beta1=self.defaults["beta1"],
- beta2=self.defaults["beta2"],
- lr=self.defaults["lr"],
- weight_decay=self.defaults["weight_decay"],
- eps=self.defaults["eps"],
- foreach=self.foreach,
- fused=self.fused,
- grad_scale=None,
- found_inf=None,
- )
|