12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061 |
- from typing import Dict, Tuple
- from torch.distributed.checkpoint.metadata import (
- STATE_DICT_TYPE,
- )
- from ._traverse import (
- traverse_state_dict,
- set_element,
- OBJ_PATH,
- STATE_DICT_ITEM,
- )
- """
- TODO:
- Need to add ability to handle tuple, OrderedDict, NamedTuple.
- Update mappings from dict to a class.
- Change set_element to recreate the right type for tuple, OrderedDict, and NamedTuple.
- """
- FLATTEN_MAPPING = Dict[str, OBJ_PATH]
- def flatten_state_dict(
- state_dict: STATE_DICT_TYPE,
- ) -> Tuple[STATE_DICT_TYPE, FLATTEN_MAPPING]:
- """
- Flatten ``state_dict`` made of nested dicts and lists into a top level dictionary.
- Use ``unflatten_state_dict`` to revert this process.
- Returns:
- A tuple with the flaten state_dict and a mapping from original to new state_dict.
- N.B. The new keys are derived from the object paths, joined by dot.
- For example: ``{ 'a': {'b':...}}`` results in the key `a.b`.
- """
- flattened: STATE_DICT_TYPE = {}
- mappings: FLATTEN_MAPPING = {}
- def flat_copy(path: OBJ_PATH, value: STATE_DICT_ITEM) -> None:
- new_fqn = ".".join(map(str, path))
- if new_fqn in flattened:
- raise ValueError(f"duplicated flatten key {new_fqn}")
- flattened[new_fqn] = value
- mappings[new_fqn] = path
- traverse_state_dict(state_dict, flat_copy)
- return flattened, mappings
- def unflatten_state_dict(
- state_dict: STATE_DICT_TYPE, mapping: FLATTEN_MAPPING
- ) -> STATE_DICT_TYPE:
- """
- Restore the original nested state_dict according to ``mapping`` and the flattened ``state_dict``
- """
- nested: STATE_DICT_TYPE = {}
- for key, value in state_dict.items():
- set_element(nested, mapping[key], value)
- return nested
|