123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 |
- # Copyright (c) Meta Platforms, Inc. and affiliates
- from typing import Callable, cast, Dict, Tuple, Union, Optional
- import torch
- import torch.distributed._tensor.api as dtensor
- from torch.distributed._tensor.op_schema import (
- ArgsType,
- KwargsType,
- OutputSpecType,
- )
- from torch.distributed._tensor.placement_types import DTensorSpec
- from torch.distributed._tensor.sharding_prop import ShardingPropagator
- from torch.distributed._tensor.redistribute import redistribute_dtensor
- from torch.utils._pytree import tree_flatten, tree_unflatten
- """
- If _ENABLE_FALLBACK set to False, dispatch will fail when an op doesn't
- have a sharding rule registered.
- """
- _ENABLE_FALLBACK = False
- def wrap(res: object, spec: OutputSpecType) -> object:
- if isinstance(res, torch.Tensor):
- assert spec is not None and isinstance(
- spec, DTensorSpec
- ), f"output spec does not match with output! Expected DTensorSpec, got {spec}."
- return dtensor.DTensor(
- res,
- spec.mesh,
- spec.placements,
- size=spec.shape,
- requires_grad=res.requires_grad,
- )
- elif isinstance(res, list):
- assert spec is not None and isinstance(
- spec, list
- ), f"output spec does not match with output! Expected list, got {spec}."
- return [
- dtensor.DTensor(e, s.mesh, s.placements, size=s.shape)
- for e, s in zip(res, spec)
- ]
- elif isinstance(res, tuple):
- assert spec is not None and isinstance(
- spec, tuple
- ), f"output spec does not match with output! Expected tuple, got {spec}"
- # NOTE: local results might return Optional Tensor from ATen op, so we need to
- # handle that case and make sure we don't wrap None with DTensor.
- # (i.e. native_layer_norm.backward)
- return tuple(
- dtensor.DTensor(e, s.mesh, s.placements, size=s.shape)
- if e is not None and s is not None
- else None
- for e, s in zip(res, spec)
- )
- else:
- # if the res contains only non tensor values, we simply return it without rewrapping
- return res
- def pack_args_kwargs_with_local_tensor(
- args: Union[ArgsType, KwargsType],
- args_schema: Union[ArgsType, KwargsType],
- redistribute_with_schema: bool = False,
- ) -> Union[ArgsType, KwargsType]:
- flatten_args, args_tree_spec = tree_flatten(args)
- flatten_args_schema, _ = tree_flatten(args_schema)
- for i, arg in enumerate(flatten_args):
- if isinstance(arg, dtensor.DTensor):
- if redistribute_with_schema:
- target_spec = flatten_args_schema[i]
- arg = redistribute_dtensor(
- arg, target_spec.mesh, target_spec.placements
- )
- # reuse the schema list and update it with local tensor
- flatten_args_schema[i] = arg._local_tensor
- return tree_unflatten(flatten_args_schema, args_tree_spec)
- def _reshape_alias(
- x: torch.Tensor, shape: Tuple[int, ...], strides: Tuple[int, ...]
- ) -> torch.Tensor:
- return torch.ops.aten.view(x, shape)
- _CURRENT_DECOMPOSITION_TABLE: Dict[Callable[..., object], Callable[..., object]] = {
- torch.ops.aten._reshape_alias.default: _reshape_alias,
- }
- def operator_dispatch(
- op_call: torch._ops.OpOverload,
- args: Tuple[object, ...],
- kwargs: Dict[str, object],
- sharding_propagator: ShardingPropagator,
- custom_dispatch_ops: Optional[Dict[str, Callable[..., object]]] = None,
- ) -> object:
- # first we need to lift some private aten aliases to public calls
- if op_call in _CURRENT_DECOMPOSITION_TABLE:
- return _CURRENT_DECOMPOSITION_TABLE[op_call](*args, **kwargs)
- # STEP 0. See if there's a user defined custom aten operator
- # implementations. Custom operators take the highest priority
- if custom_dispatch_ops is not None and str(op_call) in custom_dispatch_ops:
- # dispatch to user defined custom distributed tensor ops
- return custom_dispatch_ops[str(op_call)](*args, **kwargs)
- # unwrap the args/kwargs schema
- op_schema = sharding_propagator.prepare_op_schema(op_call, args, kwargs)
- output_sharding = sharding_propagator.propagate_op_sharding(op_call, op_schema)
- # if the schema suggestion from sharding prop is not the same instance as the
- # input op_schema, it indicates a reshard, we need to redistribute the input
- # tensors before calling the local op
- assert output_sharding.schema_suggestions is not None
- needs_redistribute = output_sharding.schema_suggestions[0] is not op_schema
- suggested_input_schema = output_sharding.schema_suggestions[0]
- local_tensor_args = pack_args_kwargs_with_local_tensor(
- args,
- suggested_input_schema.args_schema,
- redistribute_with_schema=needs_redistribute,
- )
- local_tensor_kwargs = pack_args_kwargs_with_local_tensor(
- kwargs,
- suggested_input_schema.kwargs_schema,
- redistribute_with_schema=needs_redistribute,
- )
- # run local op computation with potentially modified args/kwargs
- local_tensor_args = cast(Tuple[object, ...], local_tensor_args)
- local_tensor_kwargs = cast(Dict[str, object], local_tensor_kwargs)
- local_results = op_call(*local_tensor_args, **local_tensor_kwargs)
- if suggested_input_schema.is_inplace:
- # inplace op should return self instead of re-wrapping
- self = cast(dtensor.DTensor, args[0])
- self._spec = cast(DTensorSpec, output_sharding.output_spec)
- return self
- elif suggested_input_schema.is_out_variant:
- # out variant could possibly have multiple out args (i.e. lu_unpack.out)
- output_specs = (
- (output_sharding.output_spec,)
- if not isinstance(output_sharding.output_spec, tuple)
- else output_sharding.output_spec
- )
- out_dts = []
- spec_idx = 0
- for arg in suggested_input_schema.func_schema.arguments:
- if arg.is_out:
- out_dt = cast(dtensor.DTensor, kwargs[arg.name])
- out_dt._spec = cast(DTensorSpec, output_specs[spec_idx])
- out_dts.append(out_dt)
- spec_idx += 1
- assert len(out_dts) >= 1, "out variant should have at least one out arg"
- return tuple(out_dts) if len(out_dts) > 1 else out_dts[0]
- else:
- return wrap(local_results, output_sharding.output_spec)
|