1234567891011121314151617181920212223242526 |
- import torch
- from torch.distributed._shard.metadata import ShardMetadata
- from typing import Sequence
- def narrow_tensor_by_index(tensor: torch.Tensor, offsets: Sequence[int], sizes: Sequence[int]) -> torch.Tensor:
- """
- Narrow the tensor according to ``offsets`` and ``sizes``.
- """
- narrowed_tensor = tensor
- for idx, (offset, size) in enumerate(zip(offsets, sizes)):
- if size < tensor.size(idx):
- # Reshape to get shard for this rank and we don't want autograd
- # recording here for the narrow op and 'local_shard' should be a
- # leaf variable in the autograd graph.
- narrowed_tensor = narrowed_tensor.narrow(
- idx,
- offset,
- size
- )
- return narrowed_tensor
- def narrow_tensor(tensor: torch.Tensor, metadata: ShardMetadata) -> torch.Tensor:
- """
- Narrow the tensor according to the metadata
- """
- return narrow_tensor_by_index(tensor, metadata.shard_offsets, metadata.shard_sizes)
|