1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- from functools import reduce
- def maybe_view(tensor, size, check_same_size=True):
- if check_same_size and tensor.size() == size:
- return tensor
- return tensor.contiguous().view(size)
- def maybe_unexpand(tensor, old_size, check_same_size=True):
- if check_same_size and tensor.size() == old_size:
- return tensor
- num_unsqueezed = tensor.dim() - len(old_size)
- expanded_dims = [dim for dim, (expanded, original)
- in enumerate(zip(tensor.size()[num_unsqueezed:], old_size))
- if expanded != original]
- for _ in range(num_unsqueezed):
- tensor = tensor.sum(0, keepdim=False)
- for dim in expanded_dims:
- tensor = tensor.sum(dim, keepdim=True)
- return tensor
- # Check whether the op enable broadcasting, and whether it is supported by ONNX.
- # If dims1 and dims2 are different, then broadcast is True.
- # We always assume the combination of dims1 and dims2 is broadcastable.
- # The following types of broadcasting are supported in ONNX:
- # 1) Only one element in dims2, such as dims2 = [1, 1]
- # 2) dims2 is suffix of dims1, such as dims1 = [2, 3, 4], and dims2 = [3, 4]
- # Details can be found here: https://github.com/onnx/onnx/blob/master/docs/Operators.md#Gemm
- def check_onnx_broadcast(dims1, dims2):
- broadcast = False
- supported = True
- len1 = len(dims1)
- len2 = len(dims2)
- numel1 = reduce(lambda x, y: x * y, dims1)
- numel2 = reduce(lambda x, y: x * y, dims2)
- if len1 < len2:
- broadcast = True
- if numel2 != 1:
- supported = False
- elif len1 > len2:
- broadcast = True
- if numel2 != 1 and dims1[len1 - len2:] != dims2:
- supported = False
- else:
- if dims1 != dims2:
- broadcast = True
- if numel2 != 1:
- supported = False
- if not supported:
- raise ValueError("Numpy style broadcasting is not supported in ONNX. "
- "Input dims are: {}, {}".format(dims1, dims2))
- return broadcast
|