123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422 |
- from __future__ import annotations
- from dataclasses import dataclass
- from typing import Any, Dict, List, Optional, Tuple, Type
- from torch.ao.quantization import QConfigMapping
- from torch.ao.quantization.backend_config import BackendConfig
- from torch.ao.quantization.quant_type import QuantType, _quant_type_from_str, _get_quant_type_to_str
- __all__ = [
- "ConvertCustomConfig",
- "FuseCustomConfig",
- "PrepareCustomConfig",
- "StandaloneModuleConfigEntry",
- ]
- # TODO: replace all usages with these constants
- STANDALONE_MODULE_NAME_DICT_KEY = "standalone_module_name"
- STANDALONE_MODULE_CLASS_DICT_KEY = "standalone_module_class"
- FLOAT_TO_OBSERVED_DICT_KEY = "float_to_observed_custom_module_class"
- OBSERVED_TO_QUANTIZED_DICT_KEY = "observed_to_quantized_custom_module_class"
- NON_TRACEABLE_MODULE_NAME_DICT_KEY = "non_traceable_module_name"
- NON_TRACEABLE_MODULE_CLASS_DICT_KEY = "non_traceable_module_class"
- INPUT_QUANTIZED_INDEXES_DICT_KEY = "input_quantized_idxs"
- OUTPUT_QUANTIZED_INDEXES_DICT_KEY = "output_quantized_idxs"
- PRESERVED_ATTRIBUTES_DICT_KEY = "preserved_attributes"
- @dataclass
- class StandaloneModuleConfigEntry:
- # qconfig_mapping for the prepare function called in the submodule,
- # None means use qconfig from parent qconfig_mapping
- qconfig_mapping: Optional[QConfigMapping]
- example_inputs: Tuple[Any, ...]
- prepare_custom_config: Optional[PrepareCustomConfig]
- backend_config: Optional[BackendConfig]
- class PrepareCustomConfig:
- """
- Custom configuration for :func:`~torch.ao.quantization.quantize_fx.prepare_fx` and
- :func:`~torch.ao.quantization.quantize_fx.prepare_qat_fx`.
- Example usage::
- prepare_custom_config = PrepareCustomConfig() \
- .set_standalone_module_name("module1", qconfig_mapping, example_inputs, \
- child_prepare_custom_config, backend_config) \
- .set_standalone_module_class(MyStandaloneModule, qconfig_mapping, example_inputs, \
- child_prepare_custom_config, backend_config) \
- .set_float_to_observed_mapping(FloatCustomModule, ObservedCustomModule) \
- .set_non_traceable_module_names(["module2", "module3"]) \
- .set_non_traceable_module_classes([NonTraceableModule1, NonTraceableModule2]) \
- .set_input_quantized_indexes([0]) \
- .set_output_quantized_indexes([0]) \
- .set_preserved_attributes(["attr1", "attr2"])
- """
- def __init__(self):
- self.standalone_module_names: Dict[str, StandaloneModuleConfigEntry] = {}
- self.standalone_module_classes: Dict[Type, StandaloneModuleConfigEntry] = {}
- self.float_to_observed_mapping: Dict[QuantType, Dict[Type, Type]] = {}
- self.non_traceable_module_names: List[str] = []
- self.non_traceable_module_classes: List[Type] = []
- self.input_quantized_indexes: List[int] = []
- self.output_quantized_indexes: List[int] = []
- self.preserved_attributes: List[str] = []
- def __repr__(self):
- dict_nonempty = {
- k: v for k, v in self.__dict__.items()
- if len(v) > 0
- }
- return f"PrepareCustomConfig({dict_nonempty})"
- def set_standalone_module_name(
- self,
- module_name: str,
- qconfig_mapping: Optional[QConfigMapping],
- example_inputs: Tuple[Any, ...],
- prepare_custom_config: Optional[PrepareCustomConfig],
- backend_config: Optional[BackendConfig]) -> PrepareCustomConfig:
- """
- Set the configuration for running a standalone module identified by ``module_name``.
- If ``qconfig_mapping`` is None, the parent ``qconfig_mapping`` will be used instead.
- If ``prepare_custom_config`` is None, an empty ``PrepareCustomConfig`` will be used.
- If ``backend_config`` is None, the parent ``backend_config`` will be used instead.
- """
- self.standalone_module_names[module_name] = \
- StandaloneModuleConfigEntry(qconfig_mapping, example_inputs, prepare_custom_config, backend_config)
- return self
- def set_standalone_module_class(
- self,
- module_class: Type,
- qconfig_mapping: Optional[QConfigMapping],
- example_inputs: Tuple[Any, ...],
- prepare_custom_config: Optional[PrepareCustomConfig],
- backend_config: Optional[BackendConfig]) -> PrepareCustomConfig:
- """
- Set the configuration for running a standalone module identified by ``module_class``.
- If ``qconfig_mapping`` is None, the parent ``qconfig_mapping`` will be used instead.
- If ``prepare_custom_config`` is None, an empty ``PrepareCustomConfig`` will be used.
- If ``backend_config`` is None, the parent ``backend_config`` will be used instead.
- """
- self.standalone_module_classes[module_class] = \
- StandaloneModuleConfigEntry(qconfig_mapping, example_inputs, prepare_custom_config, backend_config)
- return self
- def set_float_to_observed_mapping(
- self,
- float_class: Type,
- observed_class: Type,
- quant_type: QuantType = QuantType.STATIC) -> PrepareCustomConfig:
- """
- Set the mapping from a custom float module class to a custom observed module class.
- The observed module class must have a ``from_float`` class method that converts the float module class
- to the observed module class. This is currently only supported for static quantization.
- """
- if quant_type != QuantType.STATIC:
- raise ValueError("set_float_to_observed_mapping is currently only supported for static quantization")
- if quant_type not in self.float_to_observed_mapping:
- self.float_to_observed_mapping[quant_type] = {}
- self.float_to_observed_mapping[quant_type][float_class] = observed_class
- return self
- def set_non_traceable_module_names(self, module_names: List[str]) -> PrepareCustomConfig:
- """
- Set the modules that are not symbolically traceable, identified by name.
- """
- self.non_traceable_module_names = module_names
- return self
- def set_non_traceable_module_classes(self, module_classes: List[Type]) -> PrepareCustomConfig:
- """
- Set the modules that are not symbolically traceable, identified by class.
- """
- self.non_traceable_module_classes = module_classes
- return self
- def set_input_quantized_indexes(self, indexes: List[int]) -> PrepareCustomConfig:
- """
- Set the indexes of the inputs of the graph that should be quantized.
- Inputs are otherwise assumed to be in fp32 by default instead.
- """
- self.input_quantized_indexes = indexes
- return self
- def set_output_quantized_indexes(self, indexes: List[int]) -> PrepareCustomConfig:
- """
- Set the indexes of the outputs of the graph that should be quantized.
- Outputs are otherwise assumed to be in fp32 by default instead.
- """
- self.output_quantized_indexes = indexes
- return self
- def set_preserved_attributes(self, attributes: List[str]) -> PrepareCustomConfig:
- """
- Set the names of the attributes that will persist in the graph module even if they are not used in
- the model's ``forward`` method.
- """
- self.preserved_attributes = attributes
- return self
- # TODO: remove this
- @classmethod
- def from_dict(cls, prepare_custom_config_dict: Dict[str, Any]) -> PrepareCustomConfig:
- """
- Create a ``PrepareCustomConfig`` from a dictionary with the following items:
- "standalone_module_name": a list of (module_name, qconfig_mapping, example_inputs,
- child_prepare_custom_config, backend_config) tuples
- "standalone_module_class" a list of (module_class, qconfig_mapping, example_inputs,
- child_prepare_custom_config, backend_config) tuples
- "float_to_observed_custom_module_class": a nested dictionary mapping from quantization
- mode to an inner mapping from float module classes to observed module classes, e.g.
- {"static": {FloatCustomModule: ObservedCustomModule}}
- "non_traceable_module_name": a list of modules names that are not symbolically traceable
- "non_traceable_module_class": a list of module classes that are not symbolically traceable
- "input_quantized_idxs": a list of indexes of graph inputs that should be quantized
- "output_quantized_idxs": a list of indexes of graph outputs that should be quantized
- "preserved_attributes": a list of attributes that persist even if they are not used in ``forward``
- This function is primarily for backward compatibility and may be removed in the future.
- """
- def _get_qconfig_mapping(obj: Any, dict_key: str) -> Optional[QConfigMapping]:
- """
- Convert the given object into a QConfigMapping if possible, else throw an exception.
- """
- if isinstance(obj, QConfigMapping) or obj is None:
- return obj
- if isinstance(obj, Dict):
- return QConfigMapping.from_dict(obj)
- raise ValueError("Expected QConfigMapping in prepare_custom_config_dict[\"%s\"], got '%s'" %
- (dict_key, type(obj)))
- def _get_prepare_custom_config(obj: Any, dict_key: str) -> Optional[PrepareCustomConfig]:
- """
- Convert the given object into a PrepareCustomConfig if possible, else throw an exception.
- """
- if isinstance(obj, PrepareCustomConfig) or obj is None:
- return obj
- if isinstance(obj, Dict):
- return PrepareCustomConfig.from_dict(obj)
- raise ValueError("Expected PrepareCustomConfig in prepare_custom_config_dict[\"%s\"], got '%s'" %
- (dict_key, type(obj)))
- def _get_backend_config(obj: Any, dict_key: str) -> Optional[BackendConfig]:
- """
- Convert the given object into a BackendConfig if possible, else throw an exception.
- """
- if isinstance(obj, BackendConfig) or obj is None:
- return obj
- if isinstance(obj, Dict):
- return BackendConfig.from_dict(obj)
- raise ValueError("Expected BackendConfig in prepare_custom_config_dict[\"%s\"], got '%s'" %
- (dict_key, type(obj)))
- conf = cls()
- for (module_name, qconfig_dict, example_inputs, _prepare_custom_config_dict, backend_config_dict) in\
- prepare_custom_config_dict.get(STANDALONE_MODULE_NAME_DICT_KEY, []):
- qconfig_mapping = _get_qconfig_mapping(qconfig_dict, STANDALONE_MODULE_NAME_DICT_KEY)
- prepare_custom_config = _get_prepare_custom_config(_prepare_custom_config_dict, STANDALONE_MODULE_NAME_DICT_KEY)
- backend_config = _get_backend_config(backend_config_dict, STANDALONE_MODULE_NAME_DICT_KEY)
- conf.set_standalone_module_name(
- module_name, qconfig_mapping, example_inputs, prepare_custom_config, backend_config)
- for (module_class, qconfig_dict, example_inputs, _prepare_custom_config_dict, backend_config_dict) in\
- prepare_custom_config_dict.get(STANDALONE_MODULE_CLASS_DICT_KEY, []):
- qconfig_mapping = _get_qconfig_mapping(qconfig_dict, STANDALONE_MODULE_CLASS_DICT_KEY)
- prepare_custom_config = _get_prepare_custom_config(_prepare_custom_config_dict, STANDALONE_MODULE_CLASS_DICT_KEY)
- backend_config = _get_backend_config(backend_config_dict, STANDALONE_MODULE_CLASS_DICT_KEY)
- conf.set_standalone_module_class(
- module_class, qconfig_mapping, example_inputs, prepare_custom_config, backend_config)
- for quant_type_name, custom_module_mapping in prepare_custom_config_dict.get(FLOAT_TO_OBSERVED_DICT_KEY, {}).items():
- quant_type = _quant_type_from_str(quant_type_name)
- for float_class, observed_class in custom_module_mapping.items():
- conf.set_float_to_observed_mapping(float_class, observed_class, quant_type)
- conf.set_non_traceable_module_names(prepare_custom_config_dict.get(NON_TRACEABLE_MODULE_NAME_DICT_KEY, []))
- conf.set_non_traceable_module_classes(prepare_custom_config_dict.get(NON_TRACEABLE_MODULE_CLASS_DICT_KEY, []))
- conf.set_input_quantized_indexes(prepare_custom_config_dict.get(INPUT_QUANTIZED_INDEXES_DICT_KEY, []))
- conf.set_output_quantized_indexes(prepare_custom_config_dict.get(OUTPUT_QUANTIZED_INDEXES_DICT_KEY, []))
- conf.set_preserved_attributes(prepare_custom_config_dict.get(PRESERVED_ATTRIBUTES_DICT_KEY, []))
- return conf
- def to_dict(self) -> Dict[str, Any]:
- """
- Convert this ``PrepareCustomConfig`` to a dictionary with the items described in
- :func:`~torch.ao.quantization.fx.custom_config.PrepareCustomConfig.from_dict`.
- """
- def _make_tuple(key: Any, e: StandaloneModuleConfigEntry):
- qconfig_dict = e.qconfig_mapping.to_dict() if e.qconfig_mapping else None
- prepare_custom_config_dict = e.prepare_custom_config.to_dict() if e.prepare_custom_config else None
- return (key, qconfig_dict, e.example_inputs, prepare_custom_config_dict, e.backend_config)
- d: Dict[str, Any] = {}
- for module_name, sm_config_entry in self.standalone_module_names.items():
- if STANDALONE_MODULE_NAME_DICT_KEY not in d:
- d[STANDALONE_MODULE_NAME_DICT_KEY] = []
- d[STANDALONE_MODULE_NAME_DICT_KEY].append(_make_tuple(module_name, sm_config_entry))
- for module_class, sm_config_entry in self.standalone_module_classes.items():
- if STANDALONE_MODULE_CLASS_DICT_KEY not in d:
- d[STANDALONE_MODULE_CLASS_DICT_KEY] = []
- d[STANDALONE_MODULE_CLASS_DICT_KEY].append(_make_tuple(module_class, sm_config_entry))
- for quant_type, float_to_observed_mapping in self.float_to_observed_mapping.items():
- if FLOAT_TO_OBSERVED_DICT_KEY not in d:
- d[FLOAT_TO_OBSERVED_DICT_KEY] = {}
- d[FLOAT_TO_OBSERVED_DICT_KEY][_get_quant_type_to_str(quant_type)] = float_to_observed_mapping
- if len(self.non_traceable_module_names) > 0:
- d[NON_TRACEABLE_MODULE_NAME_DICT_KEY] = self.non_traceable_module_names
- if len(self.non_traceable_module_classes) > 0:
- d[NON_TRACEABLE_MODULE_CLASS_DICT_KEY] = self.non_traceable_module_classes
- if len(self.input_quantized_indexes) > 0:
- d[INPUT_QUANTIZED_INDEXES_DICT_KEY] = self.input_quantized_indexes
- if len(self.output_quantized_indexes) > 0:
- d[OUTPUT_QUANTIZED_INDEXES_DICT_KEY] = self.output_quantized_indexes
- if len(self.preserved_attributes) > 0:
- d[PRESERVED_ATTRIBUTES_DICT_KEY] = self.preserved_attributes
- return d
- class ConvertCustomConfig:
- """
- Custom configuration for :func:`~torch.ao.quantization.quantize_fx.convert_fx`.
- Example usage::
- convert_custom_config = ConvertCustomConfig() \
- .set_observed_to_quantized_mapping(ObservedCustomModule, QuantizedCustomModule) \
- .set_preserved_attributes(["attr1", "attr2"])
- """
- def __init__(self):
- self.observed_to_quantized_mapping: Dict[QuantType, Dict[Type, Type]] = {}
- self.preserved_attributes: List[str] = []
- def __repr__(self):
- dict_nonempty = {
- k: v for k, v in self.__dict__.items()
- if len(v) > 0
- }
- return f"ConvertCustomConfig({dict_nonempty})"
- def set_observed_to_quantized_mapping(
- self,
- observed_class: Type,
- quantized_class: Type,
- quant_type: QuantType = QuantType.STATIC) -> ConvertCustomConfig:
- """
- Set the mapping from a custom observed module class to a custom quantized module class.
- The quantized module class must have a ``from_observed`` class method that converts the observed module class
- to the quantized module class.
- """
- if quant_type not in self.observed_to_quantized_mapping:
- self.observed_to_quantized_mapping[quant_type] = {}
- self.observed_to_quantized_mapping[quant_type][observed_class] = quantized_class
- return self
- def set_preserved_attributes(self, attributes: List[str]) -> ConvertCustomConfig:
- """
- Set the names of the attributes that will persist in the graph module even if they are not used in
- the model's ``forward`` method.
- """
- self.preserved_attributes = attributes
- return self
- # TODO: remove this
- @classmethod
- def from_dict(cls, convert_custom_config_dict: Dict[str, Any]) -> ConvertCustomConfig:
- """
- Create a ``ConvertCustomConfig`` from a dictionary with the following items:
- "observed_to_quantized_custom_module_class": a nested dictionary mapping from quantization
- mode to an inner mapping from observed module classes to quantized module classes, e.g.::
- {
- "static": {FloatCustomModule: ObservedCustomModule},
- "dynamic": {FloatCustomModule: ObservedCustomModule},
- "weight_only": {FloatCustomModule: ObservedCustomModule}
- }
- "preserved_attributes": a list of attributes that persist even if they are not used in ``forward``
- This function is primarily for backward compatibility and may be removed in the future.
- """
- conf = cls()
- for quant_type_name, custom_module_mapping in convert_custom_config_dict.get(OBSERVED_TO_QUANTIZED_DICT_KEY, {}).items():
- quant_type = _quant_type_from_str(quant_type_name)
- for observed_class, quantized_class in custom_module_mapping.items():
- conf.set_observed_to_quantized_mapping(observed_class, quantized_class, quant_type)
- conf.set_preserved_attributes(convert_custom_config_dict.get(PRESERVED_ATTRIBUTES_DICT_KEY, []))
- return conf
- def to_dict(self) -> Dict[str, Any]:
- """
- Convert this ``ConvertCustomConfig`` to a dictionary with the items described in
- :func:`~torch.ao.quantization.fx.custom_config.ConvertCustomConfig.from_dict`.
- """
- d: Dict[str, Any] = {}
- for quant_type, observed_to_quantized_mapping in self.observed_to_quantized_mapping.items():
- if OBSERVED_TO_QUANTIZED_DICT_KEY not in d:
- d[OBSERVED_TO_QUANTIZED_DICT_KEY] = {}
- d[OBSERVED_TO_QUANTIZED_DICT_KEY][_get_quant_type_to_str(quant_type)] = observed_to_quantized_mapping
- if len(self.preserved_attributes) > 0:
- d[PRESERVED_ATTRIBUTES_DICT_KEY] = self.preserved_attributes
- return d
- class FuseCustomConfig:
- """
- Custom configuration for :func:`~torch.ao.quantization.quantize_fx.fuse_fx`.
- Example usage::
- fuse_custom_config = FuseCustomConfig().set_preserved_attributes(["attr1", "attr2"])
- """
- def __init__(self):
- self.preserved_attributes: List[str] = []
- def __repr__(self):
- dict_nonempty = {
- k: v for k, v in self.__dict__.items()
- if len(v) > 0
- }
- return f"FuseCustomConfig({dict_nonempty})"
- def set_preserved_attributes(self, attributes: List[str]) -> FuseCustomConfig:
- """
- Set the names of the attributes that will persist in the graph module even if they are not used in
- the model's ``forward`` method.
- """
- self.preserved_attributes = attributes
- return self
- # TODO: remove this
- @classmethod
- def from_dict(cls, fuse_custom_config_dict: Dict[str, Any]) -> FuseCustomConfig:
- """
- Create a ``ConvertCustomConfig`` from a dictionary with the following items:
- "preserved_attributes": a list of attributes that persist even if they are not used in ``forward``
- This function is primarily for backward compatibility and may be removed in the future.
- """
- conf = cls()
- conf.set_preserved_attributes(fuse_custom_config_dict.get(PRESERVED_ATTRIBUTES_DICT_KEY, []))
- return conf
- def to_dict(self) -> Dict[str, Any]:
- """
- Convert this ``FuseCustomConfig`` to a dictionary with the items described in
- :func:`~torch.ao.quantization.fx.custom_config.ConvertCustomConfig.from_dict`.
- """
- d: Dict[str, Any] = {}
- if len(self.preserved_attributes) > 0:
- d[PRESERVED_ATTRIBUTES_DICT_KEY] = self.preserved_attributes
- return d
|