1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045 |
- from typing import Any, Dict, List, Optional, Set, Tuple, Union, Type, Callable
- from torch.ao.quantization.quant_type import QuantType
- import torch
- import copy
- import warnings
- from torch.fx import (
- GraphModule,
- )
- from torch.fx.graph import (
- Graph,
- Node,
- Argument,
- )
- from ..utils import (
- activation_is_statically_quantized,
- weight_is_quantized,
- get_qparam_dict,
- _parent_name,
- get_swapped_custom_module_class,
- )
- from ..qconfig import (
- QConfigAny,
- qconfig_equals
- )
- from ..qconfig_mapping import QConfigMapping
- from .qconfig_mapping_utils import (
- _generate_node_name_to_qconfig,
- _compare_prepare_convert_qconfig_mappings,
- _update_qconfig_for_fusion,
- _is_qconfig_supported_by_dtype_configs,
- _update_qconfig_for_qat,
- )
- from torch.ao.quantization.backend_config.utils import (
- get_root_module_to_quantized_reference_module,
- get_pattern_to_dtype_configs,
- get_fused_module_classes,
- get_qat_module_classes,
- )
- from torch.ao.quantization.backend_config import (
- BackendConfig,
- get_native_backend_config,
- )
- from torch.ao.quantization.observer import _is_activation_post_process
- from .graph_module import (
- _is_observed_module,
- _is_observed_standalone_module,
- )
- from ._equalize import update_obs_for_equalization, convert_eq_obs
- from torch.nn.utils.parametrize import type_before_parametrizations
- from .utils import (
- _get_module,
- _is_custom_module_lstm,
- get_custom_module_class_keys,
- create_getattr_from_value,
- collect_producer_nodes,
- graph_module_from_producer_nodes,
- node_arg_is_weight,
- )
- from torch.ao.quantization.utils import (
- is_per_channel,
- to_underlying_dtype,
- )
- from torch.ao.quantization.quantize import (
- _remove_qconfig,
- )
- from torch.ao.quantization.stubs import DeQuantStub
- from .custom_config import (
- ConvertCustomConfig,
- PrepareCustomConfig,
- )
- from .lower_to_fbgemm import lower_to_fbgemm
- # importing the lib so that the quantized_decomposed ops are registered
- from ._decomposed import quantized_decomposed_lib # noqa: F401
- import operator
- __all__ = [
- "convert",
- "convert_custom_module",
- "convert_standalone_module",
- "convert_weighted_module",
- ]
- def _replace_observer_with_quantize_dequantize_node_decomposed(
- model: torch.nn.Module,
- graph: Graph,
- node: Node,
- modules: Dict[str, torch.nn.Module],
- node_name_to_scope: Dict[str, Tuple[str, type]],
- node_name_to_qconfig: Dict[str, QConfigAny]) -> None:
- """ Replace activation_post_process module call node with quantize and
- dequantize node working with decomposed Tensor
- Before:
- ... -> observer_0(x) -> ...
- After:
- ... -> torch.ops.quantized_decomposed.quantize_per_tensor(x, ...) ->
- torch.ops.quantized_decomposed.dequantize_per_tensor() -> ...
- or quantize_per_channel and dequantize_per_channel
- """
- assert modules is not None
- assert isinstance(node.target, str)
- module_path, prefix = _get_module_path_and_prefix(node, node_name_to_scope, node_name_to_qconfig)
- activation_post_process = modules[node.target]
- # skip replacing observers to quant/dequant nodes if the qconfigs of all
- # consumers and producers of this observer are None
- skip_replacement = all([
- _has_none_qconfig(n, node_name_to_qconfig) for n in
- list(node.args) + list(node.users.keys())])
- if skip_replacement or not _is_conversion_supported(activation_post_process):
- # didn't find correponding quantize op and info for the activation_post_process
- # so we just remove the observer
- with graph.inserting_before(node):
- node.replace_all_uses_with(node.args[0])
- graph.erase_node(node)
- return
- # otherwise, we can convert the activation_post_process module call to quantize/dequantize node
- # 1. extract the information from activation_post_process module for generating
- # the quantize and dequantize operator
- dtype = activation_post_process.dtype # type: ignore[attr-defined]
- is_dynamic = False
- if hasattr(activation_post_process, "is_dynamic"):
- is_dynamic = activation_post_process.is_dynamic # type: ignore[assignment]
- if dtype in [torch.quint8, torch.qint8, torch.qint32] and \
- (not is_dynamic):
- # TODO: probably should cleanup this condition check, it's hard
- # to reason about this if and the following elif
- # uint8/int8/int32 static quantization branch
- # 1. extract information for inserting q/dq node from activation_post_process
- node_type = "call_function"
- quantize_op : Optional[Callable] = None
- scale, zero_point = activation_post_process.calculate_qparams() # type: ignore[attr-defined, operator]
- if is_per_channel(activation_post_process.qscheme): # type: ignore[attr-defined]
- ch_axis = int(activation_post_process.ch_axis) # type: ignore[attr-defined, arg-type]
- quantize_op = torch.ops.quantized_decomposed.quantize_per_channel
- dequantize_op = torch.ops.quantized_decomposed.dequantize_per_channel
- quant_min = activation_post_process.quant_min
- quant_max = activation_post_process.quant_max
- dtype_ = to_underlying_dtype(dtype)
- qparams = {
- "_scale_": scale,
- "_zero_point_": zero_point,
- "_axis_": ch_axis,
- "_quant_min_": quant_min,
- "_quant_max_": quant_max,
- "_dtype_": dtype_
- }
- else:
- quantize_op = torch.ops.quantized_decomposed.quantize_per_tensor
- dequantize_op = torch.ops.quantized_decomposed.dequantize_per_tensor
- scale = float(scale)
- zero_point = int(zero_point)
- quant_min = activation_post_process.quant_min # type: ignore[attr-defined]
- quant_max = activation_post_process.quant_max # type: ignore[attr-defined]
- dtype_ = to_underlying_dtype(dtype)
- qparams = {
- "_scale_": scale,
- "_zero_point_": zero_point,
- "_quant_min_": quant_min,
- "_quant_max_": quant_max,
- "_dtype_": dtype_
- }
- # 2. replace activation_post_process node with quantize and dequantize
- with graph.inserting_before(node):
- input_node = node.args[0]
- quantize_op_inputs = [input_node]
- for key, value_or_node in qparams.items():
- # TODO: we can add the information of whether a value needs to
- # be registered as an attribute in qparams dict itself
- if key in ['_scale_', '_zero_point_']:
- # For scale and zero_point values we register them as buffers in the root module.
- # TODO: maybe need more complex attr name here
- qparam_node = create_getattr_from_value(
- model, graph, module_path + prefix + key, value_or_node)
- quantize_op_inputs.append(qparam_node)
- else:
- # for qparams that are not scale/zero_point (like axis, dtype) we store them as literals in the graph.
- quantize_op_inputs.append(value_or_node)
- quantized_node = graph.create_node(node_type, quantize_op, tuple(quantize_op_inputs), {})
- # use the same qparams from quantize op
- dq_inputs = [quantized_node] + quantize_op_inputs[1:]
- dequantized_node = graph.call_function(
- dequantize_op,
- tuple(dq_inputs),
- {}
- )
- node.replace_all_uses_with(dequantized_node)
- graph.erase_node(node)
- elif is_dynamic:
- # uint8/int8/fp16 dynamic quantization
- # 1. extract information for inserting q/dq node from activation_post_process
- node_type = "call_function"
- quantize_op = torch.ops.quantized_decomposed.quantize_per_tensor.tensor
- # we only use choose_qparams for is_decomposed now,
- # but we should probably align the non-decomposed path with this as well,
- # and that can be done after we remove reduce_range flag
- # 1. extract qparams from activation_post_process module
- dtype_ = to_underlying_dtype(dtype)
- assert dtype_ in [torch.uint8, torch.int8], \
- "only uint8 and int8 are supported in reference flow for " \
- "dynamic quantization right now"
- quant_min = activation_post_process.quant_min # type: ignore[attr-defined]
- quant_max = activation_post_process.quant_max # type: ignore[attr-defined]
- # note: scale and zero_point are missing for quantize_per_tensor op
- # we'll need to get this from choose_qparams op, which we'll add after
- # this step
- qparams = {
- "_quant_min_": quant_min,
- "_quant_max_": quant_max,
- "_dtype_": dtype_
- }
- # 2. insert choose_qparams op and update the qparams list
- with graph.inserting_before(node):
- input_node = node.args[0]
- choose_qparams_op_inputs = [node.args[0]]
- for key, value in qparams.items():
- # we have quant_min, quant_max and dtype, all should be stored
- # as literals
- choose_qparams_op_inputs.append(value)
- choose_qparams_node = graph.create_node(
- "call_function",
- torch.ops.quantized_decomposed.choose_qparams.tensor,
- tuple(choose_qparams_op_inputs),
- {}
- )
- # choose_qparms returns (scale, zero_point)
- scale_node = graph.create_node(
- "call_function",
- operator.getitem,
- (choose_qparams_node, 0),
- {}
- )
- zero_point_node = graph.create_node(
- "call_function",
- operator.getitem,
- (choose_qparams_node, 1),
- {}
- )
- quant_min = qparams["_quant_min_"]
- quant_max = qparams["_quant_max_"]
- dtype = qparams["_dtype_"]
- qparams = {
- "_scale_": scale_node,
- "_zero_point_": zero_point_node,
- "_quant_min_": quant_min,
- "_quant_max_": quant_max,
- "_dtype_": dtype
- }
- # 3. replace activation_post_process node to quantize and dequantize node
- with graph.inserting_before(node):
- input_node = node.args[0]
- quantize_op_inputs = [input_node]
- for key, value_or_node in qparams.items():
- # TODO: we can add the information of whether a value needs to
- # be registered as an attribute in qparams dict itself
- if key in ['_scale_', '_zero_point_']:
- # in this case we have a node in the graph since it's dynamically
- # computed from the input, with choose_qparams op
- qparam_node = value_or_node
- quantize_op_inputs.append(qparam_node)
- else:
- # for qparams that are not scale/zero_point (like axis, dtype) we
- # store them as literals in the graph.
- quantize_op_inputs.append(value_or_node)
- quantized_node = graph.create_node(node_type, quantize_op, tuple(quantize_op_inputs), {})
- # use the same qparams from quantize op
- dq_inputs = [quantized_node] + quantize_op_inputs[1:]
- # need to use the tensor variant of this op, since scale and zero_point
- # from choose_qparam are Tensors, instead of float/int, this is to
- # prevent these nodes being traced away by downstream systems
- dequantize_op = torch.ops.quantized_decomposed.dequantize_per_tensor.tensor
- dequantized_node = graph.call_function(
- dequantize_op,
- tuple(dq_inputs),
- {}
- )
- node.replace_all_uses_with(dequantized_node)
- graph.erase_node(node)
- elif dtype == torch.float16:
- raise NotImplementedError("decomposed to float16 op not implemented yet")
- # should not reach since we have checks in the begining to make sure the
- # activation_post_process is supported
- def _replace_observer_with_quantize_dequantize_node(
- model: torch.nn.Module,
- graph: Graph,
- node: Node,
- modules: Dict[str, torch.nn.Module],
- node_name_to_scope: Dict[str, Tuple[str, type]],
- node_name_to_qconfig: Dict[str, QConfigAny]) -> None:
- """ Replace activation_post_process module call node with quantize and
- dequantize node
- Before:
- ... -> observer_0(x) -> ...
- After:
- ... -> torch.quantize_per_tensor(x, ...) -> x.dequantize() -> ...
- """
- assert modules is not None
- assert isinstance(node.target, str)
- module_path, prefix = _get_module_path_and_prefix(node, node_name_to_scope, node_name_to_qconfig)
- activation_post_process = modules[node.target]
- # skip replacing observers to quant/dequant nodes if the qconfigs of all
- # consumers and producers of this observer are None
- skip_replacement = all([
- _has_none_qconfig(n, node_name_to_qconfig) for n in
- list(node.args) + list(node.users.keys())])
- if skip_replacement or not _is_conversion_supported(activation_post_process):
- # didn't find correponding quantize op and info for the activation_post_process
- # so we just remove the observer
- with graph.inserting_before(node):
- node.replace_all_uses_with(node.args[0])
- graph.erase_node(node)
- return
- # otherwise, we can convert the activation_post_process module call to quantize/dequantize node
- dtype = activation_post_process.dtype # type: ignore[attr-defined]
- is_dynamic = False
- if hasattr(activation_post_process, "is_dynamic"):
- is_dynamic = activation_post_process.is_dynamic # type: ignore[attr-defined, assignment]
- if dtype in [torch.quint8, torch.qint8, torch.qint32] and \
- (not is_dynamic):
- # TODO: probably should cleanup this condition check, it's hard
- # to reason about this if and the following elif
- # uint8/int8/int32 static quantization branch
- # 1. extract the information from activation_post_process module for generating
- # the quantize and dequantize operator
- node_type = "call_function"
- quantize_op : Optional[Callable] = None
- scale, zero_point = activation_post_process.calculate_qparams() # type: ignore[attr-defined, operator]
- if is_per_channel(activation_post_process.qscheme): # type: ignore[attr-defined]
- ch_axis = int(activation_post_process.ch_axis) # type: ignore[attr-defined, arg-type]
- qparams = {"_scale_": scale, "_zero_point_": zero_point, "_axis_": ch_axis, "_dtype_": dtype}
- quantize_op = torch.quantize_per_channel
- else:
- scale = float(scale)
- zero_point = int(zero_point)
- qparams = {"_scale_": scale, "_zero_point_": zero_point, "_dtype_": dtype}
- quantize_op = torch.quantize_per_tensor
- # 2. replace activation_post_process node with quantize and dequantize
- with graph.inserting_before(node):
- input_node = node.args[0]
- quantize_op_inputs = [input_node]
- for key, value_or_node in qparams.items():
- # TODO: we can add the information of whether a value needs to
- # be registered as an attribute in qparams dict itself
- if key in ['_scale_', '_zero_point_']:
- # For scale and zero_point values we register them as buffers in the root module.
- # TODO: maybe need more complex attr name here
- qparam_node = create_getattr_from_value(
- model, graph, module_path + prefix + key, value_or_node)
- quantize_op_inputs.append(qparam_node)
- else:
- # for qparams that are not scale/zero_point (like axis, dtype) we store them as literals in the graph.
- quantize_op_inputs.append(value_or_node)
- quantized_node = graph.create_node(node_type, quantize_op, tuple(quantize_op_inputs), {})
- dequantized_node = graph.call_method("dequantize", args=(quantized_node,))
- node.replace_all_uses_with(dequantized_node)
- graph.erase_node(node)
- elif is_dynamic:
- # uint8/int8/fp16 dynamic quantization branch
- node_type = "call_function"
- quantize_op = torch.quantize_per_tensor_dynamic
- # TODO: get reduce range from observer
- # reduce_range = activation_post_process.reduce_range
- reduce_range = torch.backends.quantized.engine in ("fbgemm", "x86")
- qparams = {"_dtype_": dtype, "_reduce_range_": reduce_range}
- with graph.inserting_before(node):
- input_node = node.args[0]
- quantize_op_inputs = [input_node]
- for key, value in qparams.items():
- quantize_op_inputs.append(value)
- quantized_node = graph.create_node(node_type, quantize_op, tuple(quantize_op_inputs), {})
- dequantized_node = graph.call_method("dequantize", args=(quantized_node,))
- node.replace_all_uses_with(dequantized_node)
- graph.erase_node(node)
- elif dtype == torch.float16:
- node_type = "call_method"
- quantize_op = "to" # type: ignore[assignment]
- qparams = {"_dtype_": dtype}
- with graph.inserting_before(node):
- input_node = node.args[0]
- quantize_op_inputs = [input_node]
- for key, value in qparams.items():
- # TODO: we can add the information of whether a value needs to
- # be registered as an attribute in qparams dict itself
- quantize_op_inputs.append(value)
- quantized_node = graph.create_node(node_type, quantize_op, tuple(quantize_op_inputs), {})
- dequantized_node = graph.call_method("dequantize", args=(quantized_node,))
- node.replace_all_uses_with(dequantized_node)
- graph.erase_node(node)
- # should not reach since we have checks in the begining to make sure the
- # activation_post_process is supported
- # this is a temporary hack for custom module, we may want to implement
- # this properly after the custom module class design is finalized
- # TODO: DeQuantStubs are currently inserted only after custom module LSTM, while observers are inserted
- # after all other custom modules. In the future, we should simply insert QuantStubs before and DeQuantStubs
- # after custom modules in general, and replace these with "quantize" and "dequantize" nodes respectively.
- def _replace_observer_or_dequant_stub_with_dequantize_node(node: Node, graph: Graph):
- call_custom_module_node = node.args[0]
- assert isinstance(call_custom_module_node, Node), \
- f"Expecting the for call custom module node to be a Node, but got {call_custom_module_node}"
- node.replace_all_uses_with(call_custom_module_node)
- graph.erase_node(node)
- _insert_dequantize_node(call_custom_module_node, graph)
- def _is_conversion_supported(activation_post_process: torch.nn.Module) -> bool:
- dtype = activation_post_process.dtype # type: ignore[attr-defined]
- is_dynamic = False
- if hasattr(activation_post_process, "is_dynamic"):
- is_dynamic = activation_post_process.is_dynamic # type: ignore[attr-defined, assignment]
- return (
- (dtype in [torch.quint8, torch.qint8, torch.qint32] and (not is_dynamic)) or # type: ignore[return-value]
- is_dynamic or
- dtype == torch.float16
- )
- def _has_none_qconfig(node: Argument, node_name_to_qconfig: Dict[str, QConfigAny]) -> bool:
- """ Check if a node has a qconfig of None, i.e. user requested to not quantize
- the node
- """
- return isinstance(node, Node) and node.name in node_name_to_qconfig and node_name_to_qconfig[node.name] is None
- def _run_weight_observers(observed: GraphModule, backend_config: BackendConfig) -> None:
- """ Extract the subgraph that produces the weight for dynamic quant
- or weight only quant node and run the subgraph to observe the weight.
- Note that the observers of dynamic quant or weight only quant ops are
- run during the convert step.
- """
- for node in observed.graph.nodes:
- if node.op != "call_function":
- continue
- for node_arg in node.args:
- # node_arg is weight
- if node_arg and node_arg_is_weight(node, node_arg, backend_config):
- weight_observer_nodes = collect_producer_nodes(node_arg)
- if weight_observer_nodes is None:
- continue
- weight_observer_module = \
- graph_module_from_producer_nodes(
- observed, weight_observer_nodes)
- # run the weight observer
- weight_observer_module()
- def _maybe_recursive_remove_dequantize(arg: Any, node: Node, graph: Graph):
- """ If the arg is a dequantize Node, or a list/tuple/dict of dequantize Node,
- we'll recursively remove the dequantize Node
- """
- if isinstance(arg, Node) and \
- arg.op == "call_method" and \
- arg.target == "dequantize":
- quantize_node = arg.args[0]
- # we only replace the specific use since dequantize could be used by other nodes
- # as well
- node.replace_input_with(arg, quantize_node)
- elif isinstance(arg, (list, tuple)):
- for arg_element in arg:
- _maybe_recursive_remove_dequantize(arg_element, node, graph)
- elif isinstance(arg, dict):
- for arg_element in arg.values():
- _maybe_recursive_remove_dequantize(arg_element, node, graph)
- else:
- warnings.warn(f"Unsupported node type in recursive remove dequantize: {type(arg)}")
- def _get_module_path_and_prefix(
- obs_node: Node,
- node_name_to_scope: Dict[str, Tuple[str, type]],
- node_name_to_qconfig: Dict[str, QConfigAny]):
- """ Given and observer node, get the `Scope` or the fully qualified name for
- the submodule containing the observed node, also return a prefix of "_input"
- when the observed node is an input of a F.linear op, and not the output of another
- quantized op.
- TODO: this logic is hacky, we should think about how to remove it or make it more
- general
- """
- observed_node = obs_node.args[0]
- # an observer can be inserted for both input of the next operator or output of the previous
- # operator (they can be the same)
- # this flag identifies if the observer is inserted only because the observed node is
- # the input of the next operator
- assert isinstance(observed_node, Node), \
- f"Expecting observed node to be a Node, but got {observed_node}"
- is_input_observer_only = node_name_to_qconfig[observed_node.name] is None \
- if observed_node.name in node_name_to_qconfig else None
- if is_input_observer_only:
- # if the quantize function is at the input of op, then we find the first user of the observer_node
- # to get the path. If a linear call_function is in the user list, we return the first instance
- # of linear node to get the FQN.
- users = list(obs_node.users)
- first_linear_use_or_first_use = users[0] if users else None
- linear_node = None
- for n in users:
- if n.op == "call_function" and n.target == torch.nn.functional.linear:
- linear_node = n
- break
- if linear_node:
- first_linear_use_or_first_use = linear_node
- prefix = "_input"
- else:
- # if the quantize function is at the output of the op, we use the observer input node to get the path
- first_linear_use_or_first_use = observed_node
- prefix = ""
- if first_linear_use_or_first_use and first_linear_use_or_first_use.name in node_name_to_scope:
- module_path, _ = node_name_to_scope[first_linear_use_or_first_use.name]
- else:
- # TODO: it's not used, so actually we can skip quantization
- # but this requires changing return type of quantize_node
- # we can fix it later if needed
- module_path = ""
- return module_path, prefix
- def _insert_dequantize_node(
- node: Node,
- graph: Graph):
- """ Inserts dequantize node for `node` in `graph`
- """
- with graph.inserting_after(node):
- dequantize_node = graph.call_method("dequantize", (node,))
- for user_node in dict(node.users):
- if user_node is not dequantize_node:
- user_node.replace_input_with(node, dequantize_node)
- def _maybe_get_observer_for_node(
- node: Node,
- modules: Dict[str, torch.nn.Module]
- ) -> Optional[torch.nn.Module]:
- """
- If the node is observed, return the observer
- instance. Otherwise, return None.
- """
- for maybe_obs_node, _ in node.users.items():
- if maybe_obs_node.op == 'call_module':
- maybe_obs = modules[str(maybe_obs_node.target)]
- if _is_activation_post_process(maybe_obs):
- return maybe_obs
- return None
- def convert_standalone_module(
- node: Node,
- modules: Dict[str, torch.nn.Module],
- model: torch.fx.GraphModule,
- is_reference: bool,
- backend_config: Optional[BackendConfig]):
- """ Converts a observed standalone module to a quantized standalone module by calling
- the fx convert api, currently using the same `is_reference` flag as parent, but we may
- changing this behavior in the future (e.g. separating quantization and lowering for
- standalone module as well)
- Args:
- - node: The call_module node of the observed standalone module
- - modules: named_module of original model
- - model: original model
- - is_reference: a flag from parent provided by user to decide if we want to
- produce a reference model or a fbgemm/qnnpack model
- - backend_config: backend configuration of the target backend of quantization
- """
- # TODO: remove is_reference flag
- if is_reference:
- convert_fn = torch.ao.quantization.quantize_fx.convert_to_reference_fx
- else:
- convert_fn = torch.ao.quantization.quantize_fx.convert_fx # type: ignore[attr-defined]
- # We know that observed standalone module is a GraphModule since
- # it's produced by us
- observed_standalone_module : GraphModule = modules[str(node.target)] # type: ignore[assignment]
- sm_input_quantized_idxs = \
- observed_standalone_module \
- .meta["_observed_graph_module_attrs"].standalone_module_input_quantized_idxs
- # remove the dequantize nodes for inputs
- args = list(node.args)
- for idx in range(len(args)):
- if idx in sm_input_quantized_idxs:
- arg = args[idx]
- if arg.op == "call_method" and arg.target == "dequantize": # type: ignore[union-attr]
- quantize_node = arg.args[0] # type: ignore[union-attr]
- node.replace_input_with(arg, quantize_node)
- if len(arg.users) == 0: # type: ignore[union-attr]
- model.graph.erase_node(arg)
- # add dequantize node for output
- sm_output_quantized_idxs = \
- observed_standalone_module \
- .meta["_observed_graph_module_attrs"].standalone_module_output_quantized_idxs
- if len(sm_output_quantized_idxs) > 0:
- assert sm_output_quantized_idxs[0] == 0, "Currently only quantized"
- "output idxs = [0] is supported"
- # if it's non-empty, then it means the output is kept in quantized form
- # we'll just add a dequantize node after this node
- _insert_dequantize_node(node, model.graph)
- # TODO: allow convert_custom_config to override backend_config
- # for standalone module
- quantized_standalone_module = convert_fn(
- observed_standalone_module,
- backend_config=backend_config)
- parent_name, name = _parent_name(node.target)
- # update the modules dict
- setattr(modules[parent_name], name, quantized_standalone_module)
- modules[str(node.target)] = quantized_standalone_module
- def convert_weighted_module(
- node: Node,
- modules: Dict[str, torch.nn.Module],
- observed_node_names: Set[str],
- node_name_to_qconfig: Dict[str, QConfigAny],
- backend_config: BackendConfig,
- is_decomposed: bool = False):
- """ Convert a weighted module to reference quantized module in the model
- If the QConfig of a QAT module is not set, the module will still be converted to
- a float module.
- Args:
- - node: The call_module node of the observed standalone module
- - modules: named_module of original model
- - observed_node_names: names for the set of observed fx node, we can skip
- this conversion if the node is not observed
- """
- original_module = modules[str(node.target)]
- qconfig: QConfigAny = original_module.qconfig # type: ignore[assignment]
- weight_post_process = None
- qat_module_classes = get_qat_module_classes(backend_config)
- if isinstance(
- original_module,
- qat_module_classes):
- # Converting qat module to a float module, we need to attch
- # weight fake_quant to the module, weight fake_quant is assumed to be run during
- # QAT so we don't need to run it again here
- weight_post_process = original_module.weight_fake_quant
- original_module = original_module.to_float() # type: ignore[operator]
- # change qat module to float module
- parent_name, name = _parent_name(node.target)
- setattr(modules[parent_name], name, original_module)
- is_observed = node.name in observed_node_names
- # If a qconfig is not defined for this node, then skip converting to a reference module
- if qconfig is None or _has_none_qconfig(node, node_name_to_qconfig) or not is_observed:
- return
- # skip converting to reference quantized module if the qconfig is not supported
- pattern_to_dtype_configs = get_pattern_to_dtype_configs(backend_config)
- dtype_configs = pattern_to_dtype_configs.get(type(original_module), [])
- if not _is_qconfig_supported_by_dtype_configs(qconfig, dtype_configs):
- return
- # TODO: rename weight_is_statically_quantized to weight_is_int8_quantized
- is_weight_quantized = weight_is_quantized(qconfig)
- # the condition for swapping the module to reference quantized module is:
- # weights need to be quantized
- if not is_weight_quantized:
- return
- fused_module = None
- float_module = original_module
- # extract the inidividual float_module and fused module
- if isinstance(original_module, torch.ao.nn.intrinsic._FusedModule):
- fused_module = float_module
- float_module = fused_module[0] # type: ignore[index]
- # TODO: move this to the reference quantized module
- # weight_qparams or weight_qparams dict
- wq_or_wq_dict = {"is_decomposed": is_decomposed}
- if isinstance(float_module, torch.nn.RNNCellBase):
- weight_post_process_ih = qconfig.weight() # type: ignore[union-attr, operator]
- weight_post_process_hh = qconfig.weight() # type: ignore[union-attr, operator]
- weight_post_process_ih(float_module.weight_ih)
- weight_post_process_hh(float_module.weight_hh)
- weight_qparams_ih = get_qparam_dict(weight_post_process_ih)
- weight_qparams_hh = get_qparam_dict(weight_post_process_hh)
- wq_or_wq_dict.update({
- "weight_ih": weight_qparams_ih,
- "weight_hh": weight_qparams_hh,
- })
- elif isinstance(float_module, (torch.nn.LSTM, torch.nn.GRU)):
- # format for wq_or_wq_dict (flattened attributes):
- # {"weight_ih_l0_scale": ..., "weight_ih_l0_qscheme": ..., ...}
- for wn in float_module._flat_weights_names:
- if hasattr(float_module, wn) and wn.startswith("weight"):
- weight = getattr(float_module, wn)
- weight_post_process = qconfig.weight() # type: ignore[union-attr, operator]
- if weight_post_process.dtype == torch.qint8: # type: ignore[union-attr]
- weight_post_process(weight) # type: ignore[operator, misc]
- wq_or_wq_dict[wn] = get_qparam_dict(weight_post_process)
- else:
- # weight_post_process is None means the original module is not a QAT module
- # we need to get weight_post_process from qconfig in this case
- if weight_post_process is None:
- weight_post_process = qconfig.weight() # type: ignore[union-attr, operator]
- # run weight observer
- # TODO: This is currently a hack for QAT to get the right shapes for scale and zero point.
- # In the future, we should require the user to calibrate the model after calling prepare
- # Issue: https://github.com/pytorch/pytorch/issues/73941
- weight_post_process(float_module.weight) # type: ignore[operator]
- wq_or_wq_dict.update(get_qparam_dict(weight_post_process))
- # We use the same reference module for all modes of quantization: static, dynamic, weight_only
- # root_module_to_quantized_reference_module: module mapping from root (floating point) module class
- # to quantized reference module class, e.g. nn.Conv2d to nn.quantized._reference.Conv2d
- root_module_to_quantized_reference_module = get_root_module_to_quantized_reference_module(backend_config)
- ref_qmodule_cls = root_module_to_quantized_reference_module.get(type_before_parametrizations(float_module), None)
- assert (
- ref_qmodule_cls is not None
- ), f"No reference quantized module class configured for {type_before_parametrizations(float_module)}"
- ref_qmodule = ref_qmodule_cls.from_float(float_module, wq_or_wq_dict) # type: ignore[attr-defined]
- if fused_module is not None:
- fused_module[0] = ref_qmodule # type: ignore[operator]
- else:
- parent_name, name = _parent_name(node.target)
- setattr(modules[parent_name], name, ref_qmodule)
- def _remove_previous_dequantize_in_custom_module(node: Node, prev_node: Node, graph: Graph):
- """
- Given a custom module `node`, if the previous node is a dequantize, reroute the custom as follows:
- Before: quantize - dequantize - custom_module
- After: quantize - custom_module
- \\ - dequantize
- """
- # expecting the input node for a custom module node to be a Node
- assert isinstance(prev_node, Node), \
- f"Expecting the argument for custom module node to be a Node, but got {prev_node}"
- if prev_node.op == "call_method" and prev_node.target == "dequantize":
- node.replace_input_with(prev_node, prev_node.args[0])
- # Remove the dequantize node if it doesn't have other users
- if len(prev_node.users) == 0:
- graph.erase_node(prev_node)
- def convert_custom_module(
- node: Node,
- graph: Graph,
- modules: Dict[str, torch.nn.Module],
- custom_module_class_mapping: Dict[QuantType, Dict[Type, Type]],
- statically_quantized_custom_module_nodes: Set[Node]):
- """ Converts an observed custom module to a quantized custom module based on
- `custom_module_class_mapping`
- For static quantization, we'll also remove the previous `dequantize` node and
- attach the observer node for output to the module, the observer for the node
- will be converted to a dequantize node instead of quantize-dequantize pairs
- later in the graph. In the end we would have a quantized custom module that
- has the same interface as a default quantized module in nn.quantized namespace,
- i.e. quantized input and quantized output.
- Args:
- - node: The call_module node of the observed standalone module
- - graph: The graph containing the node
- - modules: named_module of original model
- - custom_module_class_mapping: mapping from observed custom module class to
- quantized custom module class, used to swap custom modules
- - statically_quantized_custom_module_nodes: we'll add the custom module node
- if we find it is statically quantized, this will be used later when converting
- observers to quant/dequant node pairs, if the observed node is a statically
- quantized custom module nodes, we'll convert the observer to a dequantize node,
- this is to keep the interface the same as the default quantized module.
- TODO: maybe we want to redesign this part to align with reference model design
- as well, but there has been some discussions around the interface, so we can do
- it later.
- """
- observed_custom_module = modules[str(node.target)]
- maybe_obs = _maybe_get_observer_for_node(node, modules)
- qconfig = observed_custom_module.qconfig
- if activation_is_statically_quantized(qconfig):
- statically_quantized_custom_module_nodes.add(node)
- if _is_custom_module_lstm(node, modules):
- # The inputs are tuples in the form (input, (hidden0, hidden1))
- # Ensure all three input nodes are quantized
- assert (
- len(node.args) == 2 and
- isinstance(node.args[1], tuple) and
- len(node.args[1]) == 2
- )
- (inputs, (hidden0, hidden1)) = node.args # type: ignore[misc]
- assert isinstance(inputs, Node)
- assert isinstance(hidden0, Node)
- assert isinstance(hidden1, Node)
- _remove_previous_dequantize_in_custom_module(node, inputs, graph)
- _remove_previous_dequantize_in_custom_module(node, hidden0, graph)
- _remove_previous_dequantize_in_custom_module(node, hidden1, graph)
- else:
- # remove the previous dequant node to ensure the inputs are quantized
- arg = node.args[0]
- assert isinstance(arg, Node)
- _remove_previous_dequantize_in_custom_module(node, arg, graph)
- # absorb the following observer into the module conversion
- activation_post_process = _maybe_get_observer_for_node(node, modules)
- assert activation_post_process is not None
- observed_custom_module.activation_post_process = activation_post_process
- # swap the observed custom module to quantized custom module
- quantized_custom_module_class = get_swapped_custom_module_class(
- observed_custom_module, custom_module_class_mapping, qconfig)
- quantized_custom_module = \
- quantized_custom_module_class.from_observed(observed_custom_module)
- parent_name, name = _parent_name(node.target)
- setattr(modules[parent_name], name, quantized_custom_module)
- def convert(
- model: GraphModule, is_reference: bool = False,
- convert_custom_config: Union[ConvertCustomConfig, Dict[str, Any], None] = None,
- is_standalone_module: bool = False,
- _remove_qconfig_flag: bool = True,
- qconfig_mapping: Union[QConfigMapping, Dict[str, Any], None] = None,
- backend_config: Union[BackendConfig, Dict[str, Any], None] = None,
- is_decomposed: bool = False) -> torch.nn.Module:
- """
- We will convert an observed model (a module with observer calls) to a reference
- quantized model, the rule is simple:
- 1. for each observer module call in the graph, we'll convert it to calls to
- quantize and dequantize functions based on the observer instance
- 2. for weighted operations like linear/conv, we need to convert them to reference
- quantized module, this requires us to know whether the dtype configured for the
- weight is supported in the backend, this is done in prepare step and the result
- is stored in observed_node_names, we can decide whether we need to swap the
- module based on this set
- Args:
- * `is_standalone_module`: when this flag is True, it means we are quantizing
- a submodule that is not inlined in parent module, and will be quantized
- separately as one unit.
- * `is_decomposed`: a boolean flag to indicate whether we want to use the
- quantize operator for decomposed quantized tensor
- (torch.ops.quantized_decomposed.quantize_per_tensor) or default/standalone
- quantized tensor (torch.quantize_per_tensor)
- Returns:
- a quantized standalone module, whether input/output is quantized is
- specified by prepare_custom_config, with
- input_quantized_idxs, output_quantized_idxs, please
- see docs for :func:`~torch.ao.quantization.prepare_fx` for details
- """
- if convert_custom_config is None:
- convert_custom_config = ConvertCustomConfig()
- if isinstance(convert_custom_config, Dict):
- warnings.warn(
- "Passing a convert_custom_config_dict to convert is deprecated and will not be supported "
- "in a future version. Please pass in a ConvertCustomConfig instead.")
- convert_custom_config = ConvertCustomConfig.from_dict(convert_custom_config)
- if isinstance(qconfig_mapping, Dict):
- warnings.warn(
- "Passing a QConfig dictionary to convert is deprecated and will not be supported "
- "in a future version. Please pass in a QConfigMapping instead.")
- qconfig_mapping = QConfigMapping.from_dict(qconfig_mapping) if qconfig_mapping else None
- qconfig_mapping = copy.deepcopy(qconfig_mapping)
- assert(qconfig_mapping is None or isinstance(qconfig_mapping, QConfigMapping))
- if isinstance(backend_config, Dict):
- warnings.warn(
- "Passing a backend_config_dict to prepare is deprecated and will not be supported "
- "in a future version. Please pass in a BackendConfig instead.")
- backend_config = BackendConfig.from_dict(backend_config)
- if backend_config is None:
- backend_config = get_native_backend_config()
- assert _is_observed_module(model), \
- 'incoming model must be produced by prepare_fx'
- observed_graph_module_attrs = model.meta["_observed_graph_module_attrs"]
- node_name_to_scope: Dict[str, Tuple[str, type]] = observed_graph_module_attrs.node_name_to_scope
- prepare_custom_config: PrepareCustomConfig = observed_graph_module_attrs.prepare_custom_config
- observed_node_names: Set[str] = observed_graph_module_attrs.observed_node_names
- node_name_to_qconfig: Dict[str, QConfigAny] = observed_graph_module_attrs.node_name_to_qconfig # type: ignore[assignment]
- # mapping from fully qualified module name to module instance
- # for example,
- # {
- # '': Model(...),
- # 'linear': Linear(...),
- # 'linear.weight_fake_quant': PerChannelMinMaxObserver(...),
- # }
- # We use remove_duplicate=False here because torch.cat uses
- # the same activation_post_process module instance but different names
- modules = dict(model.named_modules(remove_duplicate=False))
- # TODO refactor this code once we update the prepare logic to have additional information on
- # which graph nodes have been observed and share that with convert to decide which observers to ignore.
- if qconfig_mapping:
- prepare_qconfig_mapping: QConfigMapping = observed_graph_module_attrs.qconfig_mapping # type: ignore[assignment]
- modules_copy = copy.deepcopy(modules)
- if observed_graph_module_attrs.is_qat:
- _update_qconfig_for_qat(qconfig_mapping, backend_config)
- _update_qconfig_for_fusion(model, qconfig_mapping)
- _compare_prepare_convert_qconfig_mappings(prepare_qconfig_mapping, qconfig_mapping) # type: ignore[arg-type]
- convert_node_name_to_qconfig = _generate_node_name_to_qconfig(
- model, modules_copy, model.graph, qconfig_mapping, node_name_to_scope)
- # check the convert_node_name_to_qconfig generated and ensure that
- # all the values either match what was set in prepare node_name_to_qconfig
- # or are set to None in the convert_node_name_to_qconfig.
- for k, v in node_name_to_qconfig.items():
- assert k in convert_node_name_to_qconfig, 'Expected key {} in convert node_name_to_qconfig'.format(k)
- if convert_node_name_to_qconfig[k] is not None:
- assert qconfig_equals(v, convert_node_name_to_qconfig[k]), \
- "Expected k {} to have the same value in prepare and convert QConfigMappings, " \
- "but {} was updated to {}".format(k, v, convert_node_name_to_qconfig[k])
- node_name_to_qconfig = convert_node_name_to_qconfig
- custom_module_classes = get_custom_module_class_keys(convert_custom_config.observed_to_quantized_mapping)
- custom_module_class_mapping = convert_custom_config.observed_to_quantized_mapping
- if observed_graph_module_attrs.equalization_node_name_to_qconfig is not None:
- # If we want to do equalization then do the following:
- # Calculate the equalization scale, update the observers with the scaled
- # inputs, and scale the weight
- weight_eq_obs_dict = update_obs_for_equalization(model, modules)
- convert_eq_obs(model, modules, weight_eq_obs_dict)
- # always run weight observers in the top level forward method
- # for dynamic quant ops or weight only quant ops
- _run_weight_observers(model, backend_config)
- graph_inputs: List[str] = []
- for node in model.graph.nodes:
- if node.op == 'placeholder':
- graph_inputs.append(node.name)
- # additional state to override inputs to be quantized, if specified
- # by the user
- placeholder_node_seen_cnt = 0
- input_quantized_idxs: List[int] = prepare_custom_config.input_quantized_indexes
- output_quantized_idxs: List[int] = prepare_custom_config.output_quantized_indexes
- root_module_to_quantized_reference_module = get_root_module_to_quantized_reference_module(backend_config)
- # convert tuples so that it can work with isinstance(module, tuple_of_classes)
- root_module_classes = tuple(root_module_to_quantized_reference_module.keys())
- qat_module_classes = get_qat_module_classes(backend_config)
- fused_module_classes = get_fused_module_classes(backend_config)
- statically_quantized_custom_module_nodes: Set[Node] = set()
- for node in list(model.graph.nodes):
- if node.op == 'placeholder':
- cur_placeholder_node_idx = placeholder_node_seen_cnt
- placeholder_node_seen_cnt += 1
- if cur_placeholder_node_idx in input_quantized_idxs:
- # Inputs are assumed to be quantized if the user specifid the
- # input_quantized_idxs override.
- # we need to dequantize the inputs since all operators took
- # floating point inputs in reference quantized models
- _insert_dequantize_node(node, model.graph)
- elif node.op == "output":
- # If the argument is empty we don't need to do anything
- if len(output_quantized_idxs) == 0:
- continue
- # Result are kept quantized if the user specified the
- # output_quantized_idxs override.
- # Remove the dequantize operator for the node in the end if any
- return_node = node
- output = node.args[0]
- # outputs can be Node, list, tuple, dict, other cases are not supported yet
- if isinstance(output, (list, tuple)):
- for idx in output_quantized_idxs:
- _maybe_recursive_remove_dequantize(output[idx], return_node, model.graph)
- elif isinstance(output, (Node, dict)):
- # we treat dict as a single argument currently, but it can be extended
- # to support {"key": dtype} after we change output_quantized_idxs to
- # dict
- if 0 in output_quantized_idxs:
- _maybe_recursive_remove_dequantize(output, return_node, model.graph)
- else:
- warnings.warn(f"Unsupported node type for output_quantized_idxs: {type(output)}")
- elif node.op == "call_module":
- mod = _get_module(node, modules)
- assert mod is not None
- if _is_activation_post_process(mod):
- observed_node = node.args[0]
- if observed_node in statically_quantized_custom_module_nodes:
- _replace_observer_or_dequant_stub_with_dequantize_node(node, model.graph)
- else:
- if is_decomposed:
- _replace_observer_with_quantize_dequantize_node_decomposed(
- model, model.graph, node, modules, node_name_to_scope,
- node_name_to_qconfig)
- else:
- _replace_observer_with_quantize_dequantize_node(
- model, model.graph, node, modules, node_name_to_scope,
- node_name_to_qconfig)
- elif isinstance(mod, DeQuantStub):
- _replace_observer_or_dequant_stub_with_dequantize_node(node, model.graph)
- elif _is_observed_standalone_module(mod):
- convert_standalone_module(
- node, modules, model, is_reference, backend_config)
- # below this point `type_before_parametrizations` is used
- # instead of `type` to handle situations with fx quant + sparsity
- elif type_before_parametrizations(mod) in set(
- root_module_classes).union(qat_module_classes).union(fused_module_classes):
- # extra check for fused module classes to make sure they are fused module classes
- # of target modules
- if type_before_parametrizations(mod) in fused_module_classes and \
- type_before_parametrizations(mod[0]) not in root_module_classes: # type: ignore[index]
- continue
- convert_weighted_module(
- node, modules, observed_node_names, node_name_to_qconfig, backend_config, is_decomposed)
- elif type_before_parametrizations(mod) in custom_module_classes:
- convert_custom_module(
- node, model.graph, modules, custom_module_class_mapping,
- statically_quantized_custom_module_nodes)
- # remove deadcode after converting observers to quant/dequant ops
- model.graph.eliminate_dead_code()
- model = GraphModule(model, model.graph)
- # TODO: maybe move this to quantize_fx.py
- if not is_reference:
- model = lower_to_fbgemm(model, node_name_to_qconfig, node_name_to_scope)
- # TODO: this looks hacky, we want to check why we need this and see if we can
- # remove this
- # removes qconfig and activation_post_process modules
- if _remove_qconfig_flag:
- _remove_qconfig(model)
- model.delete_all_unused_submodules()
- model.meta.pop("_observed_graph_module_attrs", None)
- return model
|