123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- from typing import Optional
- import torch
- import torch.ao.nn.intrinsic as nni
- from torch.ao.nn.sparse.quantized import linear
- from torch.ao.nn.sparse.quantized.utils import LinearBlockSparsePattern
- from torch.ao.nn.quantized.modules.utils import _quantize_weight, _hide_packed_params_repr
- __all__ = ['Linear']
- class Linear(torch.nn.Module):
- r"""
- A dynamically quantized sparse linear module with float tensor as inputs and outputs.
- """
- _version = 1
- _op_type = "sparse_dynamic"
- _FLOAT_MODULE = torch.nn.Linear
- def __init__(self, in_features, out_features, row_block_size, col_block_size, bias=True, dtype=torch.qint8):
- super().__init__()
- if dtype != torch.qint8:
- raise NotImplementedError("Only QINT8 is supported for Sparse Quantized Linear Dynamic")
- self.in_features = in_features
- self.out_features = out_features
- if bias:
- bias = torch.zeros(self.out_features, dtype=torch.float)
- else:
- bias = None
- qweight = torch._empty_affine_quantized([out_features, in_features],
- scale=1, zero_point=0, dtype=torch.qint8)
- self._packed_params = linear.LinearPackedParams(row_block_size=row_block_size,
- col_block_size=col_block_size,
- dtype=dtype)
- self._packed_params.set_weight_bias(qweight, bias, row_block_size, col_block_size)
- def _get_name(self):
- return 'SparseQuantizedDynamicLinear'
- def extra_repr(self):
- return 'in_features={}, out_features={}, qscheme={}'.format(
- self.in_features, self.out_features, self.weight().qscheme()
- )
- def __repr__(self):
- return _hide_packed_params_repr(self, linear.LinearPackedParams)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return torch.ops.sparse.qlinear_dynamic(x, self._packed_params._packed_params)
- def _save_to_state_dict(self, destination, prefix, keep_vars):
- super()._save_to_state_dict(destination, prefix, keep_vars)
- destination[prefix + 'op_type'] = self._op_type
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- op_type = int(state_dict[prefix + 'op_type'])
- assert op_type == 'sparse', \
- "Cannot load from op_type [{}], expecting [{}]".format(op_type, self._op_type)
- state_dict.pop(prefix + 'op_type')
- version = local_metadata.get('version', None)
- assert version <= self._version
- # Is this code valid? In old quantization it seemed to be used to load
- # older model
- weight = state_dict.pop(prefix + 'weight')
- bias = state_dict.pop(prefix + 'bias')
- state_dict.update({prefix + '_packed_params.weight': weight,
- prefix + '_packed_params.bias': bias})
- super()._load_from_state_dict(
- state_dict, prefix, local_metadata, False,
- missing_keys, unexpected_keys, error_msgs)
- def _weight_bias(self):
- return self._packed_params._weight_bias()
- def weight(self):
- return self._weight_bias()[0]
- def bias(self):
- return self._weight_bias()[1]
- def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor],
- row_block_size: Optional[int], col_block_size: Optional[int]) -> None:
- assert row_block_size is not None and col_block_size is not None
- self.out_features = w.shape[0]
- self.in_features = w.shape[1]
- self._packed_params.set_weight_bias(w, b, row_block_size, col_block_size)
- @classmethod
- def from_float(cls, mod):
- r"""Create a quantized sparse dynamic module from a float module.
- We only care about the convert at this stage, no need for observers just yet.
- """
- assert type(mod) == cls._FLOAT_MODULE, ' nnq.' + cls.__name__ + '.from_float only works for ' + \
- cls._FLOAT_MODULE.__name__
- # TODO: Need to add options to qconfig to avoid the calibration.
- # TODO: Add calibration for the sparsity
- assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
- if type(mod) == nni.LinearReLU:
- mod = mod[0]
- if mod.qconfig is not None and mod.qconfig.weight is not None:
- weight_observer = mod.qconfig.weight()
- else:
- # We have the circular import issues if we import the qconfig in the beginning of this file:
- # https://github.com/pytorch/pytorch/pull/24231. The current workaround is to postpone the
- # import until we need it.
- from torch.ao.quantization.qconfig import default_dynamic_qconfig
- weight_observer = default_dynamic_qconfig.weight()
- # It is important to multiply by the mask BEFORE calling the `weight_observer`
- # TODO (zaf): Mask might not be part of the qconfig (T83295194)
- weight = mod.weight
- if getattr(mod.qconfig, 'mask', False):
- weight = mod.qconfig.mask * mod.weight
- weight_observer(weight)
- dtype = weight_observer.dtype
- assert dtype == torch.qint8, 'Weight observer must have dtype torch.qint8'
- w_sc, w_zp = weight_observer.calculate_qparams()
- if isinstance(w_zp, torch.Tensor):
- assert not torch.any(w_zp.bool()), "All weight zero points must map to 0"
- else:
- assert w_zp == 0, 'Weight zero point must map to 0'
- qweight = _quantize_weight(weight.float(), weight_observer)
- row_block_size, col_block_size = LinearBlockSparsePattern.block_size()
- qlinear = cls(mod.in_features,
- mod.out_features,
- row_block_size,
- col_block_size,
- dtype=dtype)
- qlinear.set_weight_bias(qweight, mod.bias, row_block_size, col_block_size)
- return qlinear
|