123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- from collections.abc import Iterable
- import torch
- import torch.nn as nn
- import torch.ao.nn.intrinsic as nni
- import torch.ao.nn.intrinsic.qat as nniqat
- from torch.nn.utils.fusion import fuse_linear_bn_weights
- from torch.nn.utils.parametrize import type_before_parametrizations
- from typing import Optional
- from .utils import _quantize_weight, _hide_packed_params_repr, WeightedQuantizedModule
- __all__ = ['LinearPackedParams', 'Linear']
- class LinearPackedParams(torch.nn.Module):
- _version = 3
- def __init__(self, dtype=torch.qint8):
- super().__init__()
- self.dtype = dtype
- if self.dtype == torch.qint8:
- wq = torch._empty_affine_quantized([1, 1], scale=1.0, zero_point=0, dtype=torch.qint8)
- elif self.dtype == torch.float16:
- wq = torch.zeros([1, 1], dtype=torch.float)
- self.set_weight_bias(wq, None)
- @torch.jit.export
- def set_weight_bias(self, weight: torch.Tensor, bias: Optional[torch.Tensor]) -> None:
- if self.dtype == torch.qint8:
- self._packed_params = torch.ops.quantized.linear_prepack(weight, bias)
- elif self.dtype == torch.float16:
- self._packed_params = torch.ops.quantized.linear_prepack_fp16(weight, bias)
- else:
- raise RuntimeError('Unsupported dtype on dynamic quantized linear!')
- @torch.jit.export
- def _weight_bias(self):
- if self.dtype == torch.qint8:
- return torch.ops.quantized.linear_unpack(self._packed_params)
- elif self.dtype == torch.float16:
- return torch.ops.quantized.linear_unpack_fp16(self._packed_params)
- else:
- raise RuntimeError('Unsupported dtype on dynamic quantized linear!')
- def forward(self, x):
- return x
- # Version 1
- # self
- # |--- weight : Tensor
- # |--- bias : Tensor
- #
- # Version 2
- # self
- # |--- weight : Tensor
- # |--- bias : Tensor
- # |--- dtype : torch.dtype
- #
- # Version 3
- # self
- # |--- _packed_params : (Tensor, Tensor) representing (weight, bias)
- # of LinearPackedParams
- # |--- dtype : torch.dtype
- def _save_to_state_dict(self, destination, prefix, keep_vars):
- super()._save_to_state_dict(destination, prefix, keep_vars)
- destination[prefix + 'dtype'] = self.dtype
- destination[prefix + '_packed_params'] = self._weight_bias()
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- version = local_metadata.get('version', None)
- if version is None or version < 2:
- self.dtype = torch.qint8
- else:
- self.dtype = state_dict[prefix + 'dtype']
- state_dict.pop(prefix + 'dtype')
- if version is None or version < 3:
- self.set_weight_bias(state_dict[prefix + 'weight'], state_dict[prefix + 'bias'])
- state_dict.pop(prefix + 'weight')
- state_dict.pop(prefix + 'bias')
- if version == 3:
- weight, bias = state_dict[prefix + '_packed_params']
- state_dict.pop(prefix + '_packed_params')
- self.set_weight_bias(weight, bias)
- super()._load_from_state_dict(state_dict, prefix, local_metadata, False,
- missing_keys, unexpected_keys, error_msgs)
- def __repr__(self):
- return self._weight_bias().__repr__()
- class Linear(WeightedQuantizedModule):
- r"""
- A quantized linear module with quantized tensor as inputs and outputs.
- We adopt the same interface as `torch.nn.Linear`, please see
- https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation.
- Similar to :class:`~torch.nn.Linear`, attributes will be randomly
- initialized at module creation time and will be overwritten later
- Attributes:
- weight (Tensor): the non-learnable quantized weights of the module of
- shape :math:`(\text{out\_features}, \text{in\_features})`.
- bias (Tensor): the non-learnable bias of the module of shape :math:`(\text{out\_features})`.
- If :attr:`bias` is ``True``, the values are initialized to zero.
- scale: `scale` parameter of output Quantized Tensor, type: double
- zero_point: `zero_point` parameter for output Quantized Tensor, type: long
- Examples::
- >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_QENGINE)
- >>> m = nn.quantized.Linear(20, 30)
- >>> input = torch.randn(128, 20)
- >>> # xdoctest: +SKIP
- >>> input = torch.quantize_per_tensor(input, 1.0, 0, torch.quint8)
- >>> output = m(input)
- >>> print(output.size())
- torch.Size([128, 30])
- """
- _version = 3
- _FLOAT_MODULE = (nn.Linear, nn.modules.linear.NonDynamicallyQuantizableLinear)
- def __init__(self, in_features, out_features, bias_=True,
- dtype=torch.qint8):
- super().__init__()
- # We don't muck around with buffers or attributes or anything here
- # to keep the module simple. *everything* is simply a Python attribute.
- # Serialization logic is explicitly handled in the below serialization and
- # deserialization modules
- self.in_features = in_features
- self.out_features = out_features
- bias = None
- if bias_:
- bias = torch.zeros(out_features, dtype=torch.float)
- if dtype == torch.qint8:
- qweight = torch._empty_affine_quantized(
- [out_features, in_features], scale=1, zero_point=0, dtype=torch.qint8)
- elif dtype == torch.float16:
- qweight = torch.zeros([out_features, in_features], dtype=torch.float)
- else:
- raise RuntimeError('Unsupported dtype specified for quantized Linear!')
- self._packed_params = LinearPackedParams(dtype)
- self._packed_params.set_weight_bias(qweight, bias)
- self.scale = 1.0
- self.zero_point = 0
- def _get_name(self):
- return 'QuantizedLinear'
- def extra_repr(self):
- return 'in_features={}, out_features={}, scale={}, zero_point={}, qscheme={}'.format(
- self.in_features, self.out_features, self.scale, self.zero_point, self.weight().qscheme()
- )
- def __repr__(self):
- return _hide_packed_params_repr(self, LinearPackedParams)
- def forward(self, x: torch.Tensor) -> torch.Tensor:
- return torch.ops.quantized.linear(
- x, self._packed_params._packed_params, self.scale, self.zero_point)
- # ===== Serialization methods =====
- # The special consideration here is that we have to unpack the weights into their
- # regular QTensor form for serialization. Packed weights should not live
- # outside the process in which they were created, rather they should be derived
- # from the QTensor weight.
- #
- # Version 1
- # self
- # |--- scale : float
- # |--- zero_point : int
- # |--- weight : Tensor
- # |--- bias : Tensor
- #
- # Version 2
- # self
- # |--- scale : float
- # |--- zero_point : int
- # |--- _packed_params : Module
- # |--- weight : Tensor
- # |--- bias : Tensor
- #
- # Version 3
- # self
- # |--- scale : float
- # |--- zero_point : int
- # |--- _packed_params : Module
- # |--- _packed_params : (Tensor, Tensor) representing weight, bias
- # of LinearPackedParams C++ struct
- #
- def _save_to_state_dict(self, destination, prefix, keep_vars):
- super()._save_to_state_dict(destination, prefix, keep_vars)
- destination[prefix + 'scale'] = torch.tensor(self.scale)
- destination[prefix + 'zero_point'] = torch.tensor(self.zero_point)
- # ===== Deserialization methods =====
- # Counterpart to the serialization methods, we must pack the serialized QTensor
- # weight into its packed format for use by the FBGEMM ops.
- def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
- missing_keys, unexpected_keys, error_msgs):
- self.scale = float(state_dict[prefix + 'scale'])
- state_dict.pop(prefix + 'scale')
- self.zero_point = int(state_dict[prefix + 'zero_point'])
- state_dict.pop(prefix + 'zero_point')
- version = local_metadata.get('version', None)
- if version is None or version == 1:
- # We moved the parameters into a LinearPackedParameters submodule
- weight = state_dict.pop(prefix + 'weight')
- bias = state_dict.pop(prefix + 'bias')
- state_dict.update({prefix + '_packed_params.weight': weight,
- prefix + '_packed_params.bias': bias})
- super()._load_from_state_dict(
- state_dict, prefix, local_metadata, False,
- missing_keys, unexpected_keys, error_msgs)
- # Function rather than property to make sure that JIT serialization doesn't
- # register this as an attribute
- def _weight_bias(self):
- return self._packed_params._weight_bias()
- def weight(self):
- return self._weight_bias()[0]
- def bias(self):
- return self._weight_bias()[1]
- def set_weight_bias(self, w: torch.Tensor, b: Optional[torch.Tensor]) -> None:
- self._packed_params.set_weight_bias(w, b)
- @classmethod
- def from_float(cls, mod):
- r"""Create a quantized module from an observed float module
- Args:
- mod (Module): a float module, either produced by torch.ao.quantization
- utilities or provided by the user
- """
- if hasattr(mod, 'weight_fake_quant'):
- if type_before_parametrizations(mod) == nniqat.LinearBn1d:
- mod.weight, mod.bias = fuse_linear_bn_weights(
- mod.weight, mod.bias, mod.bn.running_mean, mod.bn.running_var,
- mod.bn.eps, mod.bn.weight, mod.bn.bias)
- weight_post_process = mod.weight_fake_quant
- activation_post_process = mod.activation_post_process
- else:
- # This function does not participate in JIT, so it is OK to ignore
- # the type mismatch in assignment. Also, mypy has an issue with
- # iterables not being implemented, so we are ignoring those too.
- if not isinstance(cls._FLOAT_MODULE, Iterable):
- cls._FLOAT_MODULE = [cls._FLOAT_MODULE] # type: ignore[assignment]
- supported_modules = ', '.join([float_mod.__name__ for float_mod in cls._FLOAT_MODULE]) # type: ignore[attr-defined]
- error_msg = 'nnq.{}.from_float only works for {}, but got: {}'.format(cls.__name__, supported_modules, type(mod))
- assert type_before_parametrizations(mod) in cls._FLOAT_MODULE, error_msg.format() # type: ignore[attr-defined]
- assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined'
- activation_post_process = mod.activation_post_process
- if type_before_parametrizations(mod) == nni.LinearReLU:
- mod = mod[0]
- weight_post_process = mod.qconfig.weight()
- weight_post_process(mod.weight)
- dtype = weight_post_process.dtype
- act_scale, act_zp = activation_post_process.calculate_qparams()
- assert dtype == torch.qint8, 'Weight observer must have dtype torch.qint8'
- qweight = _quantize_weight(mod.weight.float(), weight_post_process)
- qlinear = cls(mod.in_features,
- mod.out_features,
- dtype=dtype)
- qlinear.set_weight_bias(qweight, mod.bias)
- qlinear.scale = float(act_scale)
- qlinear.zero_point = int(act_zp)
- return qlinear
- @classmethod
- def from_reference(cls, ref_qlinear, output_scale, output_zero_point):
- r"""Create a (fbgemm/qnnpack) quantized module from a reference quantized module
- Args:
- ref_qlinear (Module): a reference quantized linear module, either produced by torch.ao.quantization
- utilities or provided by the user
- output_scale (float): scale for output Tensor
- output_zero_point (int): zero point for output Tensor
- """
- qlinear = cls(
- ref_qlinear.in_features,
- ref_qlinear.out_features)
- qweight = ref_qlinear.get_quantized_weight()
- qlinear.set_weight_bias(qweight, ref_qlinear.bias)
- qlinear.scale = float(output_scale)
- qlinear.zero_point = int(output_zero_point)
- return qlinear
|