| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 | import torchfrom torch.nn import Conv1d, Conv2d, Conv3d, ReLU, Linear, BatchNorm1d, BatchNorm2d, BatchNorm3dfrom torch.nn.utils.parametrize import type_before_parametrizations__all__ = ['ConvReLU1d', 'ConvReLU2d', 'ConvReLU3d', 'LinearReLU', 'ConvBn1d', 'ConvBn2d',           'ConvBnReLU1d', 'ConvBnReLU2d', 'ConvBn3d', 'ConvBnReLU3d', 'BNReLU2d', 'BNReLU3d',           'LinearBn1d', 'LinearLeakyReLU', 'LinearTanh', 'ConvAdd2d', 'ConvAddReLU2d']# Used for identifying intrinsic modules used in quantizationclass _FusedModule(torch.nn.Sequential):    passclass ConvReLU1d(_FusedModule):    r"""This is a sequential container which calls the Conv1d and ReLU modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, relu):        assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(relu) == ReLU, \            'Incorrect types for input modules{}{}'.format(                type_before_parametrizations(conv), type_before_parametrizations(relu))        super().__init__(conv, relu)class ConvReLU2d(_FusedModule):    r"""This is a sequential container which calls the Conv2d and ReLU modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, relu):        assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(relu) == ReLU, \            'Incorrect types for input modules{}{}'.format(                type_before_parametrizations(conv), type_before_parametrizations(relu))        super().__init__(conv, relu)class ConvReLU3d(_FusedModule):    r"""This is a sequential container which calls the Conv3d and ReLU modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, relu):        assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(relu) == ReLU, \            'Incorrect types for input modules{}{}'.format(                type_before_parametrizations(conv), type_before_parametrizations(relu))        super().__init__(conv, relu)class LinearReLU(_FusedModule):    r"""This is a sequential container which calls the Linear and ReLU modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, linear, relu):        assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(relu) == ReLU, \            'Incorrect types for input modules{}{}'.format(                type_before_parametrizations(linear), type_before_parametrizations(relu))        super().__init__(linear, relu)class ConvBn1d(_FusedModule):    r"""This is a sequential container which calls the Conv 1d and Batch Norm 1d modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, bn):        assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d, \            'Incorrect types for input modules{}{}'.format(                type_before_parametrizations(conv), type_before_parametrizations(bn))        super().__init__(conv, bn)class ConvBn2d(_FusedModule):    r"""This is a sequential container which calls the Conv 2d and Batch Norm 2d modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, bn):        assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d, \            'Incorrect types for input modules{}{}'.format(                type_before_parametrizations(conv), type_before_parametrizations(bn))        super().__init__(conv, bn)class ConvBnReLU1d(_FusedModule):    r"""This is a sequential container which calls the Conv 1d, Batch Norm 1d, and ReLU modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, bn, relu):        assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d and \            type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \            .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))        super().__init__(conv, bn, relu)class ConvBnReLU2d(_FusedModule):    r"""This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, bn, relu):        assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d and \            type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \            .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))        super().__init__(conv, bn, relu)class ConvBn3d(_FusedModule):    r"""This is a sequential container which calls the Conv 3d and Batch Norm 3d modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, bn):        assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d, \            'Incorrect types for input modules{}{}'.format(                type_before_parametrizations(conv), type_before_parametrizations(bn))        super().__init__(conv, bn)class ConvBnReLU3d(_FusedModule):    r"""This is a sequential container which calls the Conv 3d, Batch Norm 3d, and ReLU modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, bn, relu):        assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d and \            type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \            .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))        super().__init__(conv, bn, relu)class BNReLU2d(_FusedModule):    r"""This is a sequential container which calls the BatchNorm 2d and ReLU modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, batch_norm, relu):        assert type_before_parametrizations(batch_norm) == BatchNorm2d and type_before_parametrizations(relu) == ReLU, \            'Incorrect types for input modules{}{}'.format(                type_before_parametrizations(batch_norm), type_before_parametrizations(relu))        super().__init__(batch_norm, relu)class BNReLU3d(_FusedModule):    r"""This is a sequential container which calls the BatchNorm 3d and ReLU modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, batch_norm, relu):        assert type_before_parametrizations(batch_norm) == BatchNorm3d and type_before_parametrizations(relu) == ReLU, \            'Incorrect types for input modules{}{}'.format(                type_before_parametrizations(batch_norm), type_before_parametrizations(relu))        super().__init__(batch_norm, relu)class LinearBn1d(_FusedModule):    r"""This is a sequential container which calls the Linear and BatchNorm1d modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, linear, bn):        assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(bn) == BatchNorm1d, \            'Incorrect types for input modules{}{}'.format(type_before_parametrizations(linear), type_before_parametrizations(bn))        super().__init__(linear, bn)class LinearLeakyReLU(_FusedModule):    r"""This is a sequential container which calls the Linear and LeakyReLU modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, linear, leaky_relu):        assert type(linear) == Linear and type(leaky_relu) == torch.nn.LeakyReLU, \            'Incorrect types for input modules{}{}'.format(                type(linear), type(leaky_relu))        super().__init__(linear, leaky_relu)class LinearTanh(_FusedModule):    r"""This is a sequential container which calls the Linear and Tanh modules.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, linear, tanh):        assert type(linear) == Linear and type(tanh) == torch.nn.Tanh, \            'Incorrect types for input modules{}{}'.format(                type(linear), type(tanh))        super().__init__(linear, tanh)class ConvAdd2d(_FusedModule):    r"""This is a sequential container which calls the Conv2d modules with extra Add.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, add):        super().__init__(conv)        self.add = add    def forward(self, x1, x2):        return self.add(self[0](x1), x2)class ConvAddReLU2d(_FusedModule):    r"""This is a sequential container which calls the Conv2d, add, Relu.    During quantization this will be replaced with the corresponding fused module."""    def __init__(self, conv, add, relu):        super().__init__(conv)        self.add = add        self.relu = relu    def forward(self, x1, x2):        return self.relu(self.add(self[0](x1), x2))
 |