123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- import torch
- from torch.nn import Conv1d, Conv2d, Conv3d, ReLU, Linear, BatchNorm1d, BatchNorm2d, BatchNorm3d
- from torch.nn.utils.parametrize import type_before_parametrizations
- __all__ = ['ConvReLU1d', 'ConvReLU2d', 'ConvReLU3d', 'LinearReLU', 'ConvBn1d', 'ConvBn2d',
- 'ConvBnReLU1d', 'ConvBnReLU2d', 'ConvBn3d', 'ConvBnReLU3d', 'BNReLU2d', 'BNReLU3d',
- 'LinearBn1d', 'LinearLeakyReLU', 'LinearTanh', 'ConvAdd2d', 'ConvAddReLU2d']
- # Used for identifying intrinsic modules used in quantization
- class _FusedModule(torch.nn.Sequential):
- pass
- class ConvReLU1d(_FusedModule):
- r"""This is a sequential container which calls the Conv1d and ReLU modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, relu):
- assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(relu) == ReLU, \
- 'Incorrect types for input modules{}{}'.format(
- type_before_parametrizations(conv), type_before_parametrizations(relu))
- super().__init__(conv, relu)
- class ConvReLU2d(_FusedModule):
- r"""This is a sequential container which calls the Conv2d and ReLU modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, relu):
- assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(relu) == ReLU, \
- 'Incorrect types for input modules{}{}'.format(
- type_before_parametrizations(conv), type_before_parametrizations(relu))
- super().__init__(conv, relu)
- class ConvReLU3d(_FusedModule):
- r"""This is a sequential container which calls the Conv3d and ReLU modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, relu):
- assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(relu) == ReLU, \
- 'Incorrect types for input modules{}{}'.format(
- type_before_parametrizations(conv), type_before_parametrizations(relu))
- super().__init__(conv, relu)
- class LinearReLU(_FusedModule):
- r"""This is a sequential container which calls the Linear and ReLU modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, linear, relu):
- assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(relu) == ReLU, \
- 'Incorrect types for input modules{}{}'.format(
- type_before_parametrizations(linear), type_before_parametrizations(relu))
- super().__init__(linear, relu)
- class ConvBn1d(_FusedModule):
- r"""This is a sequential container which calls the Conv 1d and Batch Norm 1d modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, bn):
- assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d, \
- 'Incorrect types for input modules{}{}'.format(
- type_before_parametrizations(conv), type_before_parametrizations(bn))
- super().__init__(conv, bn)
- class ConvBn2d(_FusedModule):
- r"""This is a sequential container which calls the Conv 2d and Batch Norm 2d modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, bn):
- assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d, \
- 'Incorrect types for input modules{}{}'.format(
- type_before_parametrizations(conv), type_before_parametrizations(bn))
- super().__init__(conv, bn)
- class ConvBnReLU1d(_FusedModule):
- r"""This is a sequential container which calls the Conv 1d, Batch Norm 1d, and ReLU modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, bn, relu):
- assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d and \
- type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \
- .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))
- super().__init__(conv, bn, relu)
- class ConvBnReLU2d(_FusedModule):
- r"""This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, bn, relu):
- assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d and \
- type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \
- .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))
- super().__init__(conv, bn, relu)
- class ConvBn3d(_FusedModule):
- r"""This is a sequential container which calls the Conv 3d and Batch Norm 3d modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, bn):
- assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d, \
- 'Incorrect types for input modules{}{}'.format(
- type_before_parametrizations(conv), type_before_parametrizations(bn))
- super().__init__(conv, bn)
- class ConvBnReLU3d(_FusedModule):
- r"""This is a sequential container which calls the Conv 3d, Batch Norm 3d, and ReLU modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, bn, relu):
- assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d and \
- type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \
- .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))
- super().__init__(conv, bn, relu)
- class BNReLU2d(_FusedModule):
- r"""This is a sequential container which calls the BatchNorm 2d and ReLU modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, batch_norm, relu):
- assert type_before_parametrizations(batch_norm) == BatchNorm2d and type_before_parametrizations(relu) == ReLU, \
- 'Incorrect types for input modules{}{}'.format(
- type_before_parametrizations(batch_norm), type_before_parametrizations(relu))
- super().__init__(batch_norm, relu)
- class BNReLU3d(_FusedModule):
- r"""This is a sequential container which calls the BatchNorm 3d and ReLU modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, batch_norm, relu):
- assert type_before_parametrizations(batch_norm) == BatchNorm3d and type_before_parametrizations(relu) == ReLU, \
- 'Incorrect types for input modules{}{}'.format(
- type_before_parametrizations(batch_norm), type_before_parametrizations(relu))
- super().__init__(batch_norm, relu)
- class LinearBn1d(_FusedModule):
- r"""This is a sequential container which calls the Linear and BatchNorm1d modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, linear, bn):
- assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(bn) == BatchNorm1d, \
- 'Incorrect types for input modules{}{}'.format(type_before_parametrizations(linear), type_before_parametrizations(bn))
- super().__init__(linear, bn)
- class LinearLeakyReLU(_FusedModule):
- r"""This is a sequential container which calls the Linear and LeakyReLU modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, linear, leaky_relu):
- assert type(linear) == Linear and type(leaky_relu) == torch.nn.LeakyReLU, \
- 'Incorrect types for input modules{}{}'.format(
- type(linear), type(leaky_relu))
- super().__init__(linear, leaky_relu)
- class LinearTanh(_FusedModule):
- r"""This is a sequential container which calls the Linear and Tanh modules.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, linear, tanh):
- assert type(linear) == Linear and type(tanh) == torch.nn.Tanh, \
- 'Incorrect types for input modules{}{}'.format(
- type(linear), type(tanh))
- super().__init__(linear, tanh)
- class ConvAdd2d(_FusedModule):
- r"""This is a sequential container which calls the Conv2d modules with extra Add.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, add):
- super().__init__(conv)
- self.add = add
- def forward(self, x1, x2):
- return self.add(self[0](x1), x2)
- class ConvAddReLU2d(_FusedModule):
- r"""This is a sequential container which calls the Conv2d, add, Relu.
- During quantization this will be replaced with the corresponding fused module."""
- def __init__(self, conv, add, relu):
- super().__init__(conv)
- self.add = add
- self.relu = relu
- def forward(self, x1, x2):
- return self.relu(self.add(self[0](x1), x2))
|