123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673 |
- # Copyright (c) Facebook, Inc. and its affiliates.
- # All rights reserved.
- #
- # This source code is licensed under the BSD-style license found in the
- # LICENSE file in the root directory of this source tree.
- import torch
- import functools
- from torch import Tensor
- from typing import Any, Callable, Optional, Tuple, Union, List
- from torch.utils._pytree import tree_flatten, tree_unflatten, _broadcast_to_and_flatten, TreeSpec
- from .pytree_hacks import tree_map_
- from functools import partial
- import os
- import itertools
- from torch._C._functorch import (
- _add_batch_dim,
- _remove_batch_dim,
- _vmap_decrement_nesting,
- _vmap_increment_nesting,
- is_batchedtensor,
- )
- from torch._functorch.utils import exposed_in
- in_dims_t = Union[int, Tuple]
- out_dims_t = Union[int, Tuple[int, ...]]
- def doesnt_support_saved_tensors_hooks(f):
- message = (
- "torch.func transforms don't yet support saved tensor hooks. "
- "Please open an issue with your use case."
- )
- @functools.wraps(f)
- def fn(*args, **kwargs):
- with torch.autograd.graph.disable_saved_tensors_hooks(message):
- return f(*args, **kwargs)
- return fn
- # Checks that all args-to-be-batched have the same batch dim size
- def _validate_and_get_batch_size(
- flat_in_dims: List[Optional[int]],
- flat_args: List) -> int:
- batch_sizes = [arg.size(in_dim) for in_dim, arg in zip(flat_in_dims, flat_args)
- if in_dim is not None]
- if len(batch_sizes) == 0:
- raise ValueError('vmap: Expected at least one Tensor to vmap over')
- if batch_sizes and any(size != batch_sizes[0] for size in batch_sizes):
- raise ValueError(
- f'vmap: Expected all tensors to have the same size in the mapped '
- f'dimension, got sizes {batch_sizes} for the mapped dimension')
- return batch_sizes[0]
- def _num_outputs(batched_outputs: Union[Tensor, Tuple[Tensor, ...]]) -> int:
- if isinstance(batched_outputs, tuple):
- return len(batched_outputs)
- return 1
- # If value is a tuple, check it has length `num_elements`.
- # If value is not a tuple, make a tuple with `value` repeated `num_elements` times
- def _as_tuple(value: Any, num_elements: int, error_message_lambda: Callable[[], str]) -> Tuple:
- if not isinstance(value, tuple):
- return (value,) * num_elements
- if len(value) != num_elements:
- raise ValueError(error_message_lambda())
- return value
- def _process_batched_inputs(
- in_dims: in_dims_t, args: Tuple, func: Callable
- ) -> Tuple[int, List[Any], List[Any], TreeSpec]:
- if not isinstance(in_dims, int) and not isinstance(in_dims, tuple):
- raise ValueError(
- f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): '
- f'expected `in_dims` to be int or a (potentially nested) tuple '
- f'matching the structure of inputs, got: {type(in_dims)}.')
- if len(args) == 0:
- raise ValueError(
- f'vmap({_get_name(func)})(<inputs>): got no inputs. Maybe you forgot to add '
- f'inputs, or you are trying to vmap over a function with no inputs. '
- f'The latter is unsupported.')
- flat_args, args_spec = tree_flatten(args)
- flat_in_dims = _broadcast_to_and_flatten(in_dims, args_spec)
- if flat_in_dims is None:
- raise ValueError(
- f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): '
- f'in_dims is not compatible with the structure of `inputs`. '
- f'in_dims has structure {tree_flatten(in_dims)[1]} but inputs '
- f'has structure {args_spec}.')
- for i, (arg, in_dim) in enumerate(zip(flat_args, flat_in_dims)):
- if not isinstance(in_dim, int) and in_dim is not None:
- raise ValueError(
- f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): '
- f'Got in_dim={in_dim} for an input but in_dim must be either '
- f'an integer dimension or None.')
- if isinstance(in_dim, int) and not isinstance(arg, Tensor):
- raise ValueError(
- f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): '
- f'Got in_dim={in_dim} for an input but the input is of type '
- f'{type(arg)}. We cannot vmap over non-Tensor arguments, '
- f'please use None as the respective in_dim')
- if in_dim is not None and (in_dim < -arg.dim() or in_dim >= arg.dim()):
- raise ValueError(
- f'vmap({_get_name(func)}, in_dims={in_dims}, ...)(<inputs>): '
- f'Got in_dim={in_dim} for some input, but that input is a Tensor '
- f'of dimensionality {arg.dim()} so expected in_dim to satisfy '
- f'-{arg.dim()} <= in_dim < {arg.dim()}.')
- if in_dim is not None and in_dim < 0:
- flat_in_dims[i] = in_dim % arg.dim()
- return _validate_and_get_batch_size(flat_in_dims, flat_args), flat_in_dims, flat_args, args_spec
- # Creates BatchedTensors for every Tensor in arg that should be batched.
- # Returns the (potentially) batched arguments and the batch_size.
- def _create_batched_inputs(
- flat_in_dims: List[Any], flat_args: List[Any], vmap_level: int, args_spec) -> Tuple:
- # See NOTE [Ignored _remove_batch_dim, _add_batch_dim]
- batched_inputs = [arg if in_dim is None else
- _add_batch_dim(arg, in_dim, vmap_level)
- for in_dim, arg in zip(flat_in_dims, flat_args)]
- return tree_unflatten(batched_inputs, args_spec)
- def _maybe_remove_batch_dim(name, batched_output, vmap_level, batch_size, out_dim):
- if out_dim is None:
- if isinstance(batched_output, torch.Tensor) and is_batchedtensor(batched_output):
- raise ValueError(
- f'vmap({name}, ...): `{name}` can not return a '
- f'BatchedTensor when out_dim is None'
- )
- return batched_output
- # out_dim is non None
- if not isinstance(batched_output, torch.Tensor):
- raise ValueError(f'vmap({name}, ...): `{name}` must only return '
- f'Tensors, got type {type(batched_output)}. '
- 'Did you mean to set out_dim= to None for output?')
- return _remove_batch_dim(batched_output, vmap_level, batch_size, out_dim)
- # Undos the batching (and any batch dimensions) associated with the `vmap_level`.
- def _unwrap_batched(
- batched_outputs: Union[Tensor, Tuple[Tensor, ...]],
- out_dims: out_dims_t,
- vmap_level: int, batch_size: int, func: Callable) -> Tuple:
- flat_batched_outputs, output_spec = tree_flatten(batched_outputs)
- def incompatible_error():
- raise ValueError(
- f'vmap({_get_name(func)}, ..., out_dims={out_dims})(<inputs>): '
- f'out_dims is not compatible with the structure of `outputs`. '
- f'out_dims has structure {tree_flatten(out_dims)[1]} but outputs '
- f'has structure {output_spec}.')
- if isinstance(batched_outputs, torch.Tensor):
- # Some weird edge case requires us to spell out the following
- # see test_out_dims_edge_case
- if isinstance(out_dims, int):
- flat_out_dims = [out_dims]
- elif isinstance(out_dims, tuple) and len(out_dims) == 1:
- flat_out_dims = out_dims
- elif out_dims is None:
- flat_out_dims = [out_dims]
- else:
- incompatible_error()
- else:
- flat_out_dims = _broadcast_to_and_flatten(out_dims, output_spec)
- if flat_out_dims is None:
- incompatible_error()
- flat_outputs = [
- _maybe_remove_batch_dim(_get_name(func), batched_output, vmap_level, batch_size, out_dim)
- for batched_output, out_dim in zip(flat_batched_outputs, flat_out_dims)
- ]
- return tree_unflatten(flat_outputs, output_spec)
- def _check_int_or_none(x, func, out_dims):
- if isinstance(x, int):
- return
- if x is None:
- return
- raise ValueError(
- f'vmap({_get_name(func)}, ..., out_dims={out_dims}): `out_dims` must be '
- f'an int, None or a python collection of ints representing where in the outputs the '
- f'vmapped dimension should appear.')
- def _check_out_dims_is_int_or_int_pytree(out_dims: out_dims_t, func: Callable) -> None:
- if isinstance(out_dims, int):
- return
- tree_map_(partial(_check_int_or_none, func=func, out_dims=out_dims), out_dims)
- def _get_name(func: Callable):
- if hasattr(func, '__name__'):
- return func.__name__
- # Not all callables have __name__, in fact, only static functions/methods do.
- # A callable created via functools.partial or an nn.Module, to name some
- # examples, don't have a __name__.
- return repr(func)
- DECOMPOSITIONS_LOADED = False
- VMAP_DECOMPOSITIONS_LIB = None
- # torch.package, Python 3.11, and torch.jit-less environments are unhappy with
- # decompositions. Only load them when needed if possible.
- def lazy_load_decompositions():
- global DECOMPOSITIONS_LOADED
- if DECOMPOSITIONS_LOADED:
- return
- DECOMPOSITIONS_LOADED = True
- if not (os.environ.get("PYTORCH_JIT", "1") == "1" and __debug__):
- return
- # use an alternate way to register an operator into the decomposition table
- # _register_jit_decomposition doesn't work for some operators, e.g. addr,
- # because the Tensor types generated cannot be unioned by torchscript
- # decomp should be type OpOverload
- global VMAP_DECOMPOSITIONS_LIB
- VMAP_DECOMPOSITIONS_LIB = torch.library.Library("aten", "IMPL", "FuncTorchBatched")
- from torch._decomp import decomposition_table
- def _register_python_decomposition_vmap(decomp):
- if decomp in decomposition_table:
- VMAP_DECOMPOSITIONS_LIB.impl(decomp, decomposition_table[decomp])
- else:
- raise RuntimeError(f"could not find decomposition for {decomp}")
- _register_python_decomposition_vmap(torch.ops.aten.mse_loss_backward.default)
- _register_python_decomposition_vmap(torch.ops.aten.addr.default)
- # vmap(func)(inputs) wraps all Tensor inputs to be batched in BatchedTensors,
- # sends those into func, and then unwraps the output BatchedTensors. Operations
- # on BatchedTensors perform the batched operations that the user is asking for.
- #
- # vmap's randomness behavior differs from JAX's, which would require a PRNG key
- # to be passed everywhere.
- @exposed_in('torch.func')
- def vmap(
- func: Callable,
- in_dims: in_dims_t = 0,
- out_dims: out_dims_t = 0,
- randomness: str = 'error',
- *,
- chunk_size=None) -> Callable:
- """
- vmap is the vectorizing map; ``vmap(func)`` returns a new function that
- maps ``func`` over some dimension of the inputs. Semantically, vmap
- pushes the map into PyTorch operations called by ``func``, effectively
- vectorizing those operations.
- vmap is useful for handling batch dimensions: one can write a function
- ``func`` that runs on examples and then lift it to a function that can
- take batches of examples with ``vmap(func)``. vmap can also be used to
- compute batched gradients when composed with autograd.
- .. note::
- :func:`torch.vmap` is aliased to :func:`torch.func.vmap` for
- convenience. Use whichever one you'd like.
- Args:
- func (function): A Python function that takes one or more arguments.
- Must return one or more Tensors.
- in_dims (int or nested structure): Specifies which dimension of the
- inputs should be mapped over. ``in_dims`` should have a
- structure like the inputs. If the ``in_dim`` for a particular
- input is None, then that indicates there is no map dimension.
- Default: 0.
- out_dims (int or Tuple[int]): Specifies where the mapped dimension
- should appear in the outputs. If ``out_dims`` is a Tuple, then
- it should have one element per output. Default: 0.
- randomness (str): Specifies whether the randomness in this
- vmap should be the same or different across batches. If 'different',
- the randomness for each batch will be different. If 'same', the
- randomness will be the same across batches. If 'error', any calls to
- random functions will error. Default: 'error'. WARNING: this flag
- only applies to random PyTorch operations and does not apply to
- Python's random module or numpy randomness.
- chunk_size (None or int): If None (default), apply a single vmap over inputs.
- If not None, then compute the vmap :attr:`chunk_size` samples at a time.
- Note that :attr:`chunk_size=1` is equivalent to computing the vmap with a for-loop.
- If you run into memory issues computing the vmap, please try a non-None chunk_size.
- Returns:
- Returns a new "batched" function. It takes the same inputs as
- ``func``, except each input has an extra dimension at the index
- specified by ``in_dims``. It takes returns the same outputs as
- ``func``, except each output has an extra dimension at the index
- specified by ``out_dims``.
- .. warning:
- :func:`vmap` works best with functional-style code. Please do not
- perform any side-effects in ``func``, with the exception of
- in-place PyTorch operations. Examples of side-effects include mutating
- Python data structures and assigning values to variables not captured
- in ``func``.
- One example of using :func:`vmap` is to compute batched dot products. PyTorch
- doesn't provide a batched ``torch.dot`` API; instead of unsuccessfully
- rummaging through docs, use :func:`vmap` to construct a new function.
- >>> torch.dot # [D], [D] -> []
- >>> batched_dot = torch.func.vmap(torch.dot) # [N, D], [N, D] -> [N]
- >>> x, y = torch.randn(2, 5), torch.randn(2, 5)
- >>> batched_dot(x, y)
- :func:`vmap` can be helpful in hiding batch dimensions, leading to a simpler
- model authoring experience.
- >>> batch_size, feature_size = 3, 5
- >>> weights = torch.randn(feature_size, requires_grad=True)
- >>>
- >>> def model(feature_vec):
- >>> # Very simple linear model with activation
- >>> return feature_vec.dot(weights).relu()
- >>>
- >>> examples = torch.randn(batch_size, feature_size)
- >>> result = torch.vmap(model)(examples)
- :func:`vmap` can also help vectorize computations that were previously difficult
- or impossible to batch. One example is higher-order gradient computation.
- The PyTorch autograd engine computes vjps (vector-Jacobian products).
- Computing a full Jacobian matrix for some function f: R^N -> R^N usually
- requires N calls to ``autograd.grad``, one per Jacobian row. Using :func:`vmap`,
- we can vectorize the whole computation, computing the Jacobian in a single
- call to ``autograd.grad``.
- >>> # Setup
- >>> N = 5
- >>> f = lambda x: x ** 2
- >>> x = torch.randn(N, requires_grad=True)
- >>> y = f(x)
- >>> I_N = torch.eye(N)
- >>>
- >>> # Sequential approach
- >>> jacobian_rows = [torch.autograd.grad(y, x, v, retain_graph=True)[0]
- >>> for v in I_N.unbind()]
- >>> jacobian = torch.stack(jacobian_rows)
- >>>
- >>> # vectorized gradient computation
- >>> def get_vjp(v):
- >>> return torch.autograd.grad(y, x, v)
- >>> jacobian = torch.vmap(get_vjp)(I_N)
- :func:`vmap` can also be nested, producing an output with multiple batched dimensions
- >>> torch.dot # [D], [D] -> []
- >>> batched_dot = torch.vmap(torch.vmap(torch.dot)) # [N1, N0, D], [N1, N0, D] -> [N1, N0]
- >>> x, y = torch.randn(2, 3, 5), torch.randn(2, 3, 5)
- >>> batched_dot(x, y) # tensor of size [2, 3]
- If the inputs are not batched along the first dimension, ``in_dims`` specifies
- the dimension that each inputs are batched along as
- >>> torch.dot # [N], [N] -> []
- >>> batched_dot = torch.vmap(torch.dot, in_dims=1) # [N, D], [N, D] -> [D]
- >>> x, y = torch.randn(2, 5), torch.randn(2, 5)
- >>> batched_dot(x, y) # output is [5] instead of [2] if batched along the 0th dimension
- If there are multiple inputs each of which is batched along different dimensions,
- ``in_dims`` must be a tuple with the batch dimension for each input as
- >>> torch.dot # [D], [D] -> []
- >>> batched_dot = torch.vmap(torch.dot, in_dims=(0, None)) # [N, D], [D] -> [N]
- >>> x, y = torch.randn(2, 5), torch.randn(5)
- >>> batched_dot(x, y) # second arg doesn't have a batch dim because in_dim[1] was None
- If the input is a Python struct, ``in_dims`` must be a tuple containing a struct
- matching the shape of the input:
- >>> f = lambda dict: torch.dot(dict['x'], dict['y'])
- >>> x, y = torch.randn(2, 5), torch.randn(5)
- >>> input = {'x': x, 'y': y}
- >>> batched_dot = torch.vmap(f, in_dims=({'x': 0, 'y': None},))
- >>> batched_dot(input)
- By default, the output is batched along the first dimension. However, it can be batched
- along any dimension by using ``out_dims``
- >>> f = lambda x: x ** 2
- >>> x = torch.randn(2, 5)
- >>> batched_pow = torch.vmap(f, out_dims=1)
- >>> batched_pow(x) # [5, 2]
- For any function that uses kwargs, the returned function will not batch the kwargs but will
- accept kwargs
- >>> x = torch.randn([2, 5])
- >>> def fn(x, scale=4.):
- >>> return x * scale
- >>>
- >>> batched_pow = torch.vmap(fn)
- >>> assert torch.allclose(batched_pow(x), x * 4)
- >>> batched_pow(x, scale=x) # scale is not batched, output has shape [2, 2, 5]
- .. note::
- vmap does not provide general autobatching or handle variable-length
- sequences out of the box.
- """
- _check_randomness_arg(randomness)
- if not (chunk_size is None or chunk_size > 0):
- raise ValueError(f"vmap: chunk_size should be None or greater than 0. (got {chunk_size})")
- @functools.wraps(func)
- def wrapped(*args, **kwargs):
- lazy_load_decompositions()
- _check_out_dims_is_int_or_int_pytree(out_dims, func)
- batch_size, flat_in_dims, flat_args, args_spec = _process_batched_inputs(in_dims, args, func)
- if chunk_size is not None:
- chunks_flat_args = _get_chunked_inputs(flat_args, flat_in_dims, batch_size, chunk_size)
- return _chunked_vmap(func, flat_in_dims, chunks_flat_args,
- args_spec, out_dims, randomness, **kwargs)
- # If chunk_size is not specified.
- return _flat_vmap(
- func, batch_size, flat_in_dims, flat_args, args_spec, out_dims, randomness, **kwargs
- )
- return wrapped
- def get_chunk_sizes(total_elems, chunk_size):
- n_chunks = n_chunks = total_elems // chunk_size
- chunk_sizes = [chunk_size] * n_chunks
- # remainder chunk
- remainder = total_elems % chunk_size
- if remainder != 0:
- chunk_sizes.append(remainder)
- return chunk_sizes
- def _get_chunked_inputs(flat_args, flat_in_dims, batch_size, chunk_size):
- split_idxs = (batch_size,)
- if chunk_size is not None:
- chunk_sizes = get_chunk_sizes(batch_size, chunk_size)
- split_idxs = tuple(itertools.accumulate(chunk_sizes))
- flat_args_chunks = tuple(
- t.tensor_split(split_idxs, dim=in_dim) if in_dim is not None else [t, ] * len(split_idxs)
- for t, in_dim in zip(flat_args, flat_in_dims)
- )
- # transpose chunk dim and flatten structure
- # chunks_flat_args is a list of flatten args
- chunks_flat_args = zip(*flat_args_chunks)
- return chunks_flat_args
- def _flatten_chunks_output(chunks_output_):
- # chunks_output is a list of chunked outputs
- # flatten chunked outputs:
- flat_chunks_output = []
- arg_spec = None
- for output in chunks_output_:
- flat_output, arg_specs = tree_flatten(output)
- flat_chunks_output.append(flat_output)
- if arg_spec is None:
- arg_spec = arg_specs
- # transpose chunk dim and flatten structure
- # flat_output_chunks is flat list of chunks
- flat_output_chunks = list(zip(*flat_chunks_output))
- return flat_output_chunks, arg_spec
- def _concat_chunked_outputs(out_dims, arg_spec, flat_output_chunks):
- # concat chunks on out_dim
- flat_out_dims = _broadcast_to_and_flatten(out_dims, arg_spec)
- assert len(flat_out_dims) == len(flat_output_chunks)
- flat_output = []
- for idx, out_dim in enumerate(flat_out_dims):
- flat_output.append(torch.cat(flat_output_chunks[idx], dim=out_dim))
- # release tensors
- flat_output_chunks[idx] = None
- return flat_output
- # Applies vmap on chunked_input and returns concatenated output over the chunks.
- def _chunked_vmap(func, flat_in_dims, chunks_flat_args, args_spec, out_dims, randomness, **kwargs):
- chunks_output = []
- rs = torch.get_rng_state() if randomness == "same" else None
- for flat_args in chunks_flat_args:
- batch_size = _validate_and_get_batch_size(flat_in_dims, flat_args)
- # The way we compute split the input in `_get_chunked_inputs`,
- # we may get a tensor with `0` batch-size. We skip any computation
- # in that case.
- # Eg.
- # >>> chunk_size = 1
- # >>> batch_size = 6
- # >>> t = torch.zeros(batch_size, 1)
- # >>> t.tensor_split([1, 2, 3, 4, 5, 6])
- # (tensor([[0.]]), tensor([[0.]]), tensor([[0.]]), tensor([[0.]]),
- # tensor([[0.]]), tensor([[0.]]), tensor([], size=(0, 1)))
- if batch_size == 0:
- continue
- if rs is not None:
- torch.set_rng_state(rs)
- chunks_output.append(
- _flat_vmap(
- func, batch_size, flat_in_dims, flat_args, args_spec, out_dims, randomness, **kwargs
- )
- )
- flat_output_chunks, arg_spec = _flatten_chunks_output(chunks_output)
- # chunked output tensors are held by both `flat_output_chunks` and `chunks_output`.
- # eagerly remove the reference from `chunks_output`.
- del chunks_output
- # concat chunks on out_dim
- flat_output = _concat_chunked_outputs(out_dims, arg_spec, flat_output_chunks)
- # finally unflatten the output
- return tree_unflatten(flat_output, arg_spec)
- def chunk_vmap(
- func: Callable,
- in_dims: in_dims_t = 0,
- out_dims: out_dims_t = 0,
- randomness: str = 'error',
- chunks=2) -> Callable:
- """
- chunk_vmap is the vectorizing map (vmap) using chunks of input data. It is a mix of vmap (which vectorizes
- everything) and map (which executes things sequentially). ``chunk_vmap`` vectorizes the input with number of
- chunks at a time. For more details about vectorizing map, see :func:`vmap`.
- .. note::
- Please use :func:`vmap` with ``chunk_size`` argument instead of this API.
- Args:
- func (function): A Python function that takes one or more arguments.
- Must return one or more Tensors.
- in_dims (int or nested structure): Specifies which dimension of the
- inputs should be mapped over. ``in_dims`` should have a
- structure like the inputs. If the ``in_dim`` for a particular
- input is None, then that indicates there is no map dimension.
- Default: 0.
- out_dims (int or Tuple[int]): Specifies where the mapped dimension
- should appear in the outputs. If ``out_dims`` is a Tuple, then
- it should have one element per output. Default: 0.
- randomness (str): Specifies whether the randomness in this
- vmap should be the same or different across batches. If 'different',
- the randomness for each batch will be different. If 'same', the
- randomness will be the same across batches. If 'error', any calls to
- random functions will error. Default: 'error'. WARNING: this flag
- only applies to random PyTorch operations and does not apply to
- Python's random module or numpy randomness.
- chunks (int): Number of chunks to use to split the input data. Default is 2.
- If equals to 1 then :func:`vmap` is called.
- Returns:
- Returns a new "batched" function. It takes the same inputs as
- ``func``, except each input has an extra dimension at the index
- specified by ``in_dims``. It takes returns the same outputs as
- ``func``, except each output has an extra dimension at the index
- specified by ``out_dims``.
- """
- _check_randomness_arg(randomness)
- if chunks == 1:
- return vmap(func, in_dims=in_dims, out_dims=out_dims, randomness=randomness)
- def _get_chunk_flat_args(flat_args_, flat_in_dims_, chunks_):
- flat_args_chunks = tuple(
- t.chunk(chunks_, dim=in_dim) if in_dim is not None else [t, ] * chunks_
- for t, in_dim in zip(flat_args_, flat_in_dims_)
- )
- # transpose chunk dim and flatten structure
- # chunks_flat_args is a list of flatten args
- chunks_flat_args = zip(*flat_args_chunks)
- return chunks_flat_args
- @functools.wraps(func)
- def wrapped_with_chunks(*args, **kwargs):
- _check_out_dims_is_int_or_int_pytree(out_dims, func)
- _, flat_in_dims, flat_args, args_spec = _process_batched_inputs(in_dims, args, func)
- # Chunk flat arguments
- chunks_flat_args = _get_chunk_flat_args(flat_args, flat_in_dims, chunks)
- # Apply vmap on chunks
- return _chunked_vmap(func, flat_in_dims, chunks_flat_args, args_spec, out_dims, randomness, **kwargs)
- return wrapped_with_chunks
- # Vmap refactored helper funcions:
- def _check_randomness_arg(randomness):
- if randomness not in ['error', 'different', 'same']:
- raise RuntimeError(f"Only allowed values for randomness are 'error', 'different', or 'same'. Got {randomness}")
- @doesnt_support_saved_tensors_hooks
- def _flat_vmap(func, batch_size, flat_in_dims, flat_args, args_spec, out_dims, randomness, **kwargs):
- vmap_level = _vmap_increment_nesting(batch_size, randomness)
- try:
- batched_inputs = _create_batched_inputs(flat_in_dims, flat_args, vmap_level, args_spec)
- batched_outputs = func(*batched_inputs, **kwargs)
- return _unwrap_batched(batched_outputs, out_dims, vmap_level, batch_size, func)
- finally:
- _vmap_decrement_nesting()
- # `restore_vmap` is a private helper function. It is vmap but has the following
- # differences:
- # - instead of returning outputs, it returns an (outputs, out_dims) tuple.
- # out_dims is a pytree of same shape as outputs and contains Optional[int]
- # specifying where the vmapped dimension, if it exists, is in the corresponding output.
- # - does no validation on in_dims or inputs (vmap expects at least one Tensor to be vmapped).
- # restore_vmap allows for no inputs to have the vmap dimension
- # - does no validation on outputs (vmap expects only Tensor outputs)
- # restore_vmap allows for return of arbitrary outputs (not just Tensors)
- #
- # The TL;DR is that restore_vmap is more general than vmap and has a slightly
- # different API. The relaxations are so that we can "pause" vmap in the middle
- # of its execution and then "restore" it later (this is what we do in
- # the generate_vmap_rule=True implementation of autograd.Function).
- #
- # restore_vmap can be technically used in the implementation of vmap, but doing
- # that refactor is a bit technically challenging because:
- # - vmap couples the tensor-wrapping code with error checking
- # - vmap's tensor unwrapping code is in C++; we would need to rewrite part of it
- # in python because it overlaps with unwrap_batched
- @doesnt_support_saved_tensors_hooks
- def restore_vmap(func, in_dims, batch_size, randomness):
- def inner(*args, **kwargs):
- vmap_level = _vmap_increment_nesting(batch_size, randomness)
- try:
- batched_inputs = wrap_batched(args, in_dims, vmap_level)
- batched_outputs = func(*batched_inputs, **kwargs)
- return unwrap_batched(batched_outputs, vmap_level)
- finally:
- _vmap_decrement_nesting()
- return inner
- def wrap_batched(args, bdims, level):
- flat_args, spec = tree_flatten(args)
- flat_bdims = _broadcast_to_and_flatten(bdims, spec)
- assert flat_bdims is not None
- result = _create_batched_inputs(flat_bdims, flat_args, level, spec)
- return result
- def unwrap_batched(args, level):
- flat_args, spec = tree_flatten(args)
- if len(flat_args) == 0:
- return args, ()
- result = [torch._C._functorch._unwrap_batched(arg, level) if isinstance(arg, torch.Tensor)
- else (arg, None) for arg in flat_args]
- output, bdims = zip(*result)
- return tree_unflatten(output, spec), tree_unflatten(bdims, spec)
|