123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- import operator
- from typing import Dict, List
- import torch
- from .. import variables
- from ..exc import unimplemented
- from ..utils import HAS_NUMPY, istype, np
- from .base import typestr, VariableTracker
- class ConstantVariable(VariableTracker):
- def __init__(self, value, **kwargs):
- super().__init__(**kwargs)
- assert not isinstance(value, torch.Tensor)
- assert not isinstance(value, torch.SymInt)
- assert not isinstance(value, torch.SymFloat)
- if HAS_NUMPY and isinstance(value, np.number):
- self.value = value.item()
- else:
- self.value = value
- def as_proxy(self):
- return self.value
- def __str__(self):
- # return f"ConstantVariable({self.value})"
- return f"ConstantVariable({type(self.value).__name__})"
- def python_type(self):
- return type(self.value)
- def as_python_constant(self):
- return self.value
- @property
- def items(self):
- """
- Need this when adding a BaseListVariable and a ConstantVariable together.
- Happens in detectron2.
- """
- return self.unpack_var_sequence(tx=None)
- def getitem_const(self, arg: VariableTracker):
- return ConstantVariable(
- self.value[arg.as_python_constant()],
- **VariableTracker.propagate([self, arg]),
- )
- @staticmethod
- def is_literal(obj):
- if type(obj) in (int, float, bool, type(None), str):
- return True
- if type(obj) in (list, tuple, set, frozenset):
- return all(ConstantVariable.is_literal(x) for x in obj)
- return False
- def unpack_var_sequence(self, tx):
- try:
- options = VariableTracker.propagate([self])
- return [ConstantVariable(x, **options) for x in self.as_python_constant()]
- except TypeError as e:
- raise NotImplementedError from e
- def const_getattr(self, tx, name):
- member = getattr(self.value, name)
- if callable(member):
- raise NotImplementedError()
- return member
- def call_method(
- self,
- tx,
- name,
- args: "List[VariableTracker]",
- kwargs: "Dict[str, VariableTracker]",
- ) -> "VariableTracker":
- from .tensor import SymNodeVariable
- options = VariableTracker.propagate(self, args, kwargs.values())
- if istype(self.value, tuple):
- # empty tuple constant etc
- return variables.TupleVariable(
- items=self.unpack_var_sequence(tx), source=self.source, **options
- ).call_method(tx, name, args, kwargs)
- if any([isinstance(x, SymNodeVariable) for x in args]):
- # Promote to SymNodeVariable for operations involving dynamic shapes.
- return variables.SymNodeVariable(self.as_proxy(), self.value).call_method(
- tx, name, args, kwargs
- )
- try:
- const_args = [a.as_python_constant() for a in args]
- const_kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
- except NotImplementedError:
- return super().call_method(tx, name, args, kwargs)
- def has_arith_binop(num_ty):
- return (
- isinstance(self.value, num_ty)
- and hasattr(operator, name)
- and len(args) == 1
- and args[0].is_python_constant()
- )
- if isinstance(self.value, str) and name in str.__dict__.keys():
- assert not kwargs
- method = getattr(self.value, name)
- return ConstantVariable(method(*const_args, **const_kwargs), **options)
- elif has_arith_binop(int) or has_arith_binop(float):
- op = getattr(operator, name)
- add_target = const_args[0]
- if isinstance(add_target, (torch.SymInt, torch.SymFloat)):
- from .tensor import SymNodeVariable
- # Addition between a non sym and sym makes a sym
- # sym_num = tx.output.register_attr_or_module(
- # add_target, f"sym_shape_{add_target}", source=None
- # )
- proxy = tx.output.create_proxy(
- "call_function", op, (self.value, add_target), {}
- )
- return SymNodeVariable.create(tx, proxy, add_target, **options)
- return ConstantVariable(op(self.value, add_target), **options)
- elif name == "__len__" and not (args or kwargs):
- return ConstantVariable(len(self.value), **options)
- elif name == "__contains__" and len(args) == 1 and args[0].is_python_constant():
- assert not kwargs
- search = args[0].as_python_constant()
- result = search in self.value
- return ConstantVariable(result, **options)
- unimplemented(f"const method call {typestr(self.value)}.{name}")
- class EnumVariable(VariableTracker):
- def __init__(self, value, **kwargs):
- super().__init__(**kwargs)
- self.value = value
- def as_proxy(self):
- return self.value
- def __str__(self):
- return f"EnumVariable({type(self.value)})"
- def python_type(self):
- return type(self.value)
- def as_python_constant(self):
- return self.value
- def const_getattr(self, tx, name):
- member = getattr(self.value, name)
- if callable(member):
- raise NotImplementedError()
- return member
|