1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- from torch import Tensor, memory_format
- from typing import Callable, Optional, List, overload, Tuple
- from torch.types import _bool, _dtype, _device
- # Defined in tools/autograd/templates/python_nn_functions.cpp
- fractional_max_pool2d: Callable
- fractional_max_pool3d: Callable
- max_pool1d: Callable
- max_pool2d: Callable
- max_pool3d: Callable
- adaptive_max_pool1d: Callable
- adaptive_max_pool2d: Callable
- adaptive_max_pool3d: Callable
- avg_pool2d: Callable
- avg_pool3d: Callable
- hardtanh_: Callable
- elu_: Callable
- leaky_relu_: Callable
- logsigmoid: Callable
- softplus: Callable
- softshrink: Callable
- one_hot: Callable
- scaled_dot_product_attention: Callable
- hardtanh: Callable
- leaky_relu: Callable
- hardsigmoid: Callable
- # Defined in aten/src/ATen/native/mkldnn/Linear.cpp
- def mkldnn_linear(input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: ...
- # Defined at aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp
- def mkldnn_reorder_conv2d_weight(self: Tensor, padding: List, stride: List, dilatation: List, groups: int) -> Tensor: ...
- def mkldnn_reorder_conv3d_weight(self: Tensor, padding: List, stride: List, dilatation: List, groups: int) -> Tensor: ...
- # Defined in aten/src/ATen/native/mkldnn/Prelu.cpp
- def mkldnn_prelu(input: Tensor, weight: Tensor) -> Tensor: ...
- # Defined at tools/autograd/templates/python_nn_functions.cpp
- @overload
- def _parse_to(device: _device, dtype: _dtype, non_blocking: _bool, copy: _bool, *,
- memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ...
- @overload
- def _parse_to(dtype: _dtype, non_blocking: _bool, copy: _bool, *,
- memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ...
- @overload
- def _parse_to(tensor: Tensor, non_blocking: _bool, copy: _bool, *,
- memory_format: memory_format) -> Tuple[_device, _dtype, _bool, memory_format]: ...
- # Defined in aten/src/ATen/naitve/PadSequence.cpp
- def pad_sequence(sequences: List[Tensor], batch_first: bool = False,
- padding_value: float = ...) -> Tensor: ...
- def flatten_dense_tensors(tensors: List[Tensor]) -> Tensor: ...
- def unflatten_dense_tensors(flat: Tensor, tensors: List[Tensor]) -> List[Tensor]: ...
|