123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- from sympy.core.add import Add
- from sympy.core.basic import Basic
- from sympy.core.containers import Tuple
- from sympy.core.singleton import S
- from sympy.core.symbol import (Symbol, symbols)
- from sympy.logic.boolalg import And
- from sympy.core.symbol import Str
- from sympy.unify.core import Compound, Variable
- from sympy.unify.usympy import (deconstruct, construct, unify, is_associative,
- is_commutative)
- from sympy.abc import x, y, z, n
- def test_deconstruct():
- expr = Basic(S(1), S(2), S(3))
- expected = Compound(Basic, (1, 2, 3))
- assert deconstruct(expr) == expected
- assert deconstruct(1) == 1
- assert deconstruct(x) == x
- assert deconstruct(x, variables=(x,)) == Variable(x)
- assert deconstruct(Add(1, x, evaluate=False)) == Compound(Add, (1, x))
- assert deconstruct(Add(1, x, evaluate=False), variables=(x,)) == \
- Compound(Add, (1, Variable(x)))
- def test_construct():
- expr = Compound(Basic, (S(1), S(2), S(3)))
- expected = Basic(S(1), S(2), S(3))
- assert construct(expr) == expected
- def test_nested():
- expr = Basic(S(1), Basic(S(2)), S(3))
- cmpd = Compound(Basic, (S(1), Compound(Basic, Tuple(2)), S(3)))
- assert deconstruct(expr) == cmpd
- assert construct(cmpd) == expr
- def test_unify():
- expr = Basic(S(1), S(2), S(3))
- a, b, c = map(Symbol, 'abc')
- pattern = Basic(a, b, c)
- assert list(unify(expr, pattern, {}, (a, b, c))) == [{a: 1, b: 2, c: 3}]
- assert list(unify(expr, pattern, variables=(a, b, c))) == \
- [{a: 1, b: 2, c: 3}]
- def test_unify_variables():
- assert list(unify(Basic(S(1), S(2)), Basic(S(1), x), {}, variables=(x,))) == [{x: 2}]
- def test_s_input():
- expr = Basic(S(1), S(2))
- a, b = map(Symbol, 'ab')
- pattern = Basic(a, b)
- assert list(unify(expr, pattern, {}, (a, b))) == [{a: 1, b: 2}]
- assert list(unify(expr, pattern, {a: 5}, (a, b))) == []
- def iterdicteq(a, b):
- a = tuple(a)
- b = tuple(b)
- return len(a) == len(b) and all(x in b for x in a)
- def test_unify_commutative():
- expr = Add(1, 2, 3, evaluate=False)
- a, b, c = map(Symbol, 'abc')
- pattern = Add(a, b, c, evaluate=False)
- result = tuple(unify(expr, pattern, {}, (a, b, c)))
- expected = ({a: 1, b: 2, c: 3},
- {a: 1, b: 3, c: 2},
- {a: 2, b: 1, c: 3},
- {a: 2, b: 3, c: 1},
- {a: 3, b: 1, c: 2},
- {a: 3, b: 2, c: 1})
- assert iterdicteq(result, expected)
- def test_unify_iter():
- expr = Add(1, 2, 3, evaluate=False)
- a, b, c = map(Symbol, 'abc')
- pattern = Add(a, c, evaluate=False)
- assert is_associative(deconstruct(pattern))
- assert is_commutative(deconstruct(pattern))
- result = list(unify(expr, pattern, {}, (a, c)))
- expected = [{a: 1, c: Add(2, 3, evaluate=False)},
- {a: 1, c: Add(3, 2, evaluate=False)},
- {a: 2, c: Add(1, 3, evaluate=False)},
- {a: 2, c: Add(3, 1, evaluate=False)},
- {a: 3, c: Add(1, 2, evaluate=False)},
- {a: 3, c: Add(2, 1, evaluate=False)},
- {a: Add(1, 2, evaluate=False), c: 3},
- {a: Add(2, 1, evaluate=False), c: 3},
- {a: Add(1, 3, evaluate=False), c: 2},
- {a: Add(3, 1, evaluate=False), c: 2},
- {a: Add(2, 3, evaluate=False), c: 1},
- {a: Add(3, 2, evaluate=False), c: 1}]
- assert iterdicteq(result, expected)
- def test_hard_match():
- from sympy.functions.elementary.trigonometric import (cos, sin)
- expr = sin(x) + cos(x)**2
- p, q = map(Symbol, 'pq')
- pattern = sin(p) + cos(p)**2
- assert list(unify(expr, pattern, {}, (p, q))) == [{p: x}]
- def test_matrix():
- from sympy.matrices.expressions.matexpr import MatrixSymbol
- X = MatrixSymbol('X', n, n)
- Y = MatrixSymbol('Y', 2, 2)
- Z = MatrixSymbol('Z', 2, 3)
- assert list(unify(X, Y, {}, variables=[n, Str('X')])) == [{Str('X'): Str('Y'), n: 2}]
- assert list(unify(X, Z, {}, variables=[n, Str('X')])) == []
- def test_non_frankenAdds():
- # the is_commutative property used to fail because of Basic.__new__
- # This caused is_commutative and str calls to fail
- expr = x+y*2
- rebuilt = construct(deconstruct(expr))
- # Ensure that we can run these commands without causing an error
- str(rebuilt)
- rebuilt.is_commutative
- def test_FiniteSet_commutivity():
- from sympy.sets.sets import FiniteSet
- a, b, c, x, y = symbols('a,b,c,x,y')
- s = FiniteSet(a, b, c)
- t = FiniteSet(x, y)
- variables = (x, y)
- assert {x: FiniteSet(a, c), y: b} in tuple(unify(s, t, variables=variables))
- def test_FiniteSet_complex():
- from sympy.sets.sets import FiniteSet
- a, b, c, x, y, z = symbols('a,b,c,x,y,z')
- expr = FiniteSet(Basic(S(1), x), y, Basic(x, z))
- pattern = FiniteSet(a, Basic(x, b))
- variables = a, b
- expected = ({b: 1, a: FiniteSet(y, Basic(x, z))},
- {b: z, a: FiniteSet(y, Basic(S(1), x))})
- assert iterdicteq(unify(expr, pattern, variables=variables), expected)
- def test_and():
- variables = x, y
- expected = ({x: z > 0, y: n < 3},)
- assert iterdicteq(unify((z>0) & (n<3), And(x, y), variables=variables),
- expected)
- def test_Union():
- from sympy.sets.sets import Interval
- assert list(unify(Interval(0, 1) + Interval(10, 11),
- Interval(0, 1) + Interval(12, 13),
- variables=(Interval(12, 13),)))
- def test_is_commutative():
- assert is_commutative(deconstruct(x+y))
- assert is_commutative(deconstruct(x*y))
- assert not is_commutative(deconstruct(x**y))
- def test_commutative_in_commutative():
- from sympy.abc import a,b,c,d
- from sympy.functions.elementary.trigonometric import (cos, sin)
- eq = sin(3)*sin(4)*sin(5) + 4*cos(3)*cos(4)
- pat = a*cos(b)*cos(c) + d*sin(b)*sin(c)
- assert next(unify(eq, pat, variables=(a,b,c,d)))
|