test_tensor.py 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042
  1. from sympy.concrete.summations import Sum
  2. from sympy.core.function import expand
  3. from sympy.core.numbers import Integer
  4. from sympy.matrices.dense import (Matrix, eye)
  5. from sympy.tensor.indexed import Indexed
  6. from sympy.combinatorics import Permutation
  7. from sympy.core import S, Rational, Symbol, Basic, Add
  8. from sympy.core.containers import Tuple
  9. from sympy.core.symbol import symbols
  10. from sympy.functions.elementary.miscellaneous import sqrt
  11. from sympy.tensor.array import Array
  12. from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, \
  13. get_symmetric_group_sgs, TensorIndex, tensor_mul, TensAdd, \
  14. riemann_cyclic_replace, riemann_cyclic, TensMul, tensor_heads, \
  15. TensorManager, TensExpr, TensorHead, canon_bp, \
  16. tensorhead, tensorsymmetry, TensorType, substitute_indices, \
  17. WildTensorIndex, WildTensorHead, _WildTensExpr
  18. from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy
  19. from sympy.matrices import diag
  20. def _is_equal(arg1, arg2):
  21. if isinstance(arg1, TensExpr):
  22. return arg1.equals(arg2)
  23. elif isinstance(arg2, TensExpr):
  24. return arg2.equals(arg1)
  25. return arg1 == arg2
  26. #################### Tests from tensor_can.py #######################
  27. def test_canonicalize_no_slot_sym():
  28. # A_d0 * B^d0; T_c = A^d0*B_d0
  29. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  30. a, b, d0, d1 = tensor_indices('a,b,d0,d1', Lorentz)
  31. A, B = tensor_heads('A,B', [Lorentz], TensorSymmetry.no_symmetry(1))
  32. t = A(-d0)*B(d0)
  33. tc = t.canon_bp()
  34. assert str(tc) == 'A(L_0)*B(-L_0)'
  35. # A^a * B^b; T_c = T
  36. t = A(a)*B(b)
  37. tc = t.canon_bp()
  38. assert tc == t
  39. # B^b * A^a
  40. t1 = B(b)*A(a)
  41. tc = t1.canon_bp()
  42. assert str(tc) == 'A(a)*B(b)'
  43. # A symmetric
  44. # A^{b}_{d0}*A^{d0, a}; T_c = A^{a d0}*A{b}_{d0}
  45. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  46. t = A(b, -d0)*A(d0, a)
  47. tc = t.canon_bp()
  48. assert str(tc) == 'A(a, L_0)*A(b, -L_0)'
  49. # A^{d1}_{d0}*B^d0*C_d1
  50. # T_c = A^{d0 d1}*B_d0*C_d1
  51. B, C = tensor_heads('B,C', [Lorentz], TensorSymmetry.no_symmetry(1))
  52. t = A(d1, -d0)*B(d0)*C(-d1)
  53. tc = t.canon_bp()
  54. assert str(tc) == 'A(L_0, L_1)*B(-L_0)*C(-L_1)'
  55. # A without symmetry
  56. # A^{d1}_{d0}*B^d0*C_d1 ord=[d0,-d0,d1,-d1]; g = [2,1,0,3,4,5]
  57. # T_c = A^{d0 d1}*B_d1*C_d0; can = [0,2,3,1,4,5]
  58. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
  59. t = A(d1, -d0)*B(d0)*C(-d1)
  60. tc = t.canon_bp()
  61. assert str(tc) == 'A(L_0, L_1)*B(-L_1)*C(-L_0)'
  62. # A, B without symmetry
  63. # A^{d1}_{d0}*B_{d1}^{d0}
  64. # T_c = A^{d0 d1}*B_{d0 d1}
  65. B = TensorHead('B', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
  66. t = A(d1, -d0)*B(-d1, d0)
  67. tc = t.canon_bp()
  68. assert str(tc) == 'A(L_0, L_1)*B(-L_0, -L_1)'
  69. # A_{d0}^{d1}*B_{d1}^{d0}
  70. # T_c = A^{d0 d1}*B_{d1 d0}
  71. t = A(-d0, d1)*B(-d1, d0)
  72. tc = t.canon_bp()
  73. assert str(tc) == 'A(L_0, L_1)*B(-L_1, -L_0)'
  74. # A, B, C without symmetry
  75. # A^{d1 d0}*B_{a d0}*C_{d1 b}
  76. # T_c=A^{d0 d1}*B_{a d1}*C_{d0 b}
  77. C = TensorHead('C', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
  78. t = A(d1, d0)*B(-a, -d0)*C(-d1, -b)
  79. tc = t.canon_bp()
  80. assert str(tc) == 'A(L_0, L_1)*B(-a, -L_1)*C(-L_0, -b)'
  81. # A symmetric, B and C without symmetry
  82. # A^{d1 d0}*B_{a d0}*C_{d1 b}
  83. # T_c = A^{d0 d1}*B_{a d0}*C_{d1 b}
  84. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  85. t = A(d1, d0)*B(-a, -d0)*C(-d1, -b)
  86. tc = t.canon_bp()
  87. assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-L_1, -b)'
  88. # A and C symmetric, B without symmetry
  89. # A^{d1 d0}*B_{a d0}*C_{d1 b} ord=[a,b,d0,-d0,d1,-d1]
  90. # T_c = A^{d0 d1}*B_{a d0}*C_{b d1}
  91. C = TensorHead('C', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  92. t = A(d1, d0)*B(-a, -d0)*C(-d1, -b)
  93. tc = t.canon_bp()
  94. assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-b, -L_1)'
  95. def test_canonicalize_no_dummies():
  96. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  97. a, b, c, d = tensor_indices('a, b, c, d', Lorentz)
  98. # A commuting
  99. # A^c A^b A^a
  100. # T_c = A^a A^b A^c
  101. A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1))
  102. t = A(c)*A(b)*A(a)
  103. tc = t.canon_bp()
  104. assert str(tc) == 'A(a)*A(b)*A(c)'
  105. # A anticommuting
  106. # A^c A^b A^a
  107. # T_c = -A^a A^b A^c
  108. A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1), 1)
  109. t = A(c)*A(b)*A(a)
  110. tc = t.canon_bp()
  111. assert str(tc) == '-A(a)*A(b)*A(c)'
  112. # A commuting and symmetric
  113. # A^{b,d}*A^{c,a}
  114. # T_c = A^{a c}*A^{b d}
  115. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  116. t = A(b, d)*A(c, a)
  117. tc = t.canon_bp()
  118. assert str(tc) == 'A(a, c)*A(b, d)'
  119. # A anticommuting and symmetric
  120. # A^{b,d}*A^{c,a}
  121. # T_c = -A^{a c}*A^{b d}
  122. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2), 1)
  123. t = A(b, d)*A(c, a)
  124. tc = t.canon_bp()
  125. assert str(tc) == '-A(a, c)*A(b, d)'
  126. # A^{c,a}*A^{b,d}
  127. # T_c = A^{a c}*A^{b d}
  128. t = A(c, a)*A(b, d)
  129. tc = t.canon_bp()
  130. assert str(tc) == 'A(a, c)*A(b, d)'
  131. def test_tensorhead_construction_without_symmetry():
  132. L = TensorIndexType('Lorentz')
  133. A1 = TensorHead('A', [L, L])
  134. A2 = TensorHead('A', [L, L], TensorSymmetry.no_symmetry(2))
  135. assert A1 == A2
  136. A3 = TensorHead('A', [L, L], TensorSymmetry.fully_symmetric(2)) # Symmetric
  137. assert A1 != A3
  138. def test_no_metric_symmetry():
  139. # no metric symmetry; A no symmetry
  140. # A^d1_d0 * A^d0_d1
  141. # T_c = A^d0_d1 * A^d1_d0
  142. Lorentz = TensorIndexType('Lorentz', dummy_name='L', metric_symmetry=0)
  143. d0, d1, d2, d3 = tensor_indices('d:4', Lorentz)
  144. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
  145. t = A(d1, -d0)*A(d0, -d1)
  146. tc = t.canon_bp()
  147. assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)'
  148. # A^d1_d2 * A^d0_d3 * A^d2_d1 * A^d3_d0
  149. # T_c = A^d0_d1 * A^d1_d0 * A^d2_d3 * A^d3_d2
  150. t = A(d1, -d2)*A(d0, -d3)*A(d2, -d1)*A(d3, -d0)
  151. tc = t.canon_bp()
  152. assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)*A(L_2, -L_3)*A(L_3, -L_2)'
  153. # A^d0_d2 * A^d1_d3 * A^d3_d0 * A^d2_d1
  154. # T_c = A^d0_d1 * A^d1_d2 * A^d2_d3 * A^d3_d0
  155. t = A(d0, -d1)*A(d1, -d2)*A(d2, -d3)*A(d3, -d0)
  156. tc = t.canon_bp()
  157. assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_2)*A(L_2, -L_3)*A(L_3, -L_0)'
  158. def test_canonicalize1():
  159. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  160. a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \
  161. tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Lorentz)
  162. # A_d0*A^d0; ord = [d0,-d0]
  163. # T_c = A^d0*A_d0
  164. A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1))
  165. t = A(-d0)*A(d0)
  166. tc = t.canon_bp()
  167. assert str(tc) == 'A(L_0)*A(-L_0)'
  168. # A commuting
  169. # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0
  170. # T_c = A^d0*A_d0*A^d1*A_d1*A^d2*A_d2
  171. t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0)
  172. tc = t.canon_bp()
  173. assert str(tc) == 'A(L_0)*A(-L_0)*A(L_1)*A(-L_1)*A(L_2)*A(-L_2)'
  174. # A anticommuting
  175. # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0
  176. # T_c 0
  177. A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1), 1)
  178. t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0)
  179. tc = t.canon_bp()
  180. assert tc == 0
  181. # A commuting symmetric
  182. # A^{d0 b}*A^a_d1*A^d1_d0
  183. # T_c = A^{a d0}*A^{b d1}*A_{d0 d1}
  184. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  185. t = A(d0, b)*A(a, -d1)*A(d1, -d0)
  186. tc = t.canon_bp()
  187. assert str(tc) == 'A(a, L_0)*A(b, L_1)*A(-L_0, -L_1)'
  188. # A, B commuting symmetric
  189. # A^{d0 b}*A^d1_d0*B^a_d1
  190. # T_c = A^{b d0}*A_d0^d1*B^a_d1
  191. B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  192. t = A(d0, b)*A(d1, -d0)*B(a, -d1)
  193. tc = t.canon_bp()
  194. assert str(tc) == 'A(b, L_0)*A(-L_0, L_1)*B(a, -L_1)'
  195. # A commuting symmetric
  196. # A^{d1 d0 b}*A^{a}_{d1 d0}; ord=[a,b, d0,-d0,d1,-d1]
  197. # T_c = A^{a d0 d1}*A^{b}_{d0 d1}
  198. A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3))
  199. t = A(d1, d0, b)*A(a, -d1, -d0)
  200. tc = t.canon_bp()
  201. assert str(tc) == 'A(a, L_0, L_1)*A(b, -L_0, -L_1)'
  202. # A^{d3 d0 d2}*A^a0_{d1 d2}*A^d1_d3^a1*A^{a2 a3}_d0
  203. # T_c = A^{a0 d0 d1}*A^a1_d0^d2*A^{a2 a3 d3}*A_{d1 d2 d3}
  204. t = A(d3, d0, d2)*A(a0, -d1, -d2)*A(d1, -d3, a1)*A(a2, a3, -d0)
  205. tc = t.canon_bp()
  206. assert str(tc) == 'A(a0, L_0, L_1)*A(a1, -L_0, L_2)*A(a2, a3, L_3)*A(-L_1, -L_2, -L_3)'
  207. # A commuting symmetric, B antisymmetric
  208. # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
  209. # in this esxample and in the next three,
  210. # renaming dummy indices and using symmetry of A,
  211. # T = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3
  212. # can = 0
  213. A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3))
  214. B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
  215. t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3)
  216. tc = t.canon_bp()
  217. assert tc == 0
  218. # A anticommuting symmetric, B antisymmetric
  219. # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
  220. # T_c = A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3}
  221. A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3), 1)
  222. B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
  223. t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3)
  224. tc = t.canon_bp()
  225. assert str(tc) == 'A(L_0, L_1, L_2)*A(-L_0, -L_1, L_3)*B(-L_2, -L_3)'
  226. # A anticommuting symmetric, B antisymmetric commuting, antisymmetric metric
  227. # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
  228. # T_c = -A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3}
  229. Spinor = TensorIndexType('Spinor', dummy_name='S', metric_symmetry=-1)
  230. a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \
  231. tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Spinor)
  232. A = TensorHead('A', [Spinor]*3, TensorSymmetry.fully_symmetric(3), 1)
  233. B = TensorHead('B', [Spinor]*2, TensorSymmetry.fully_symmetric(-2))
  234. t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3)
  235. tc = t.canon_bp()
  236. assert str(tc) == '-A(S_0, S_1, S_2)*A(-S_0, -S_1, S_3)*B(-S_2, -S_3)'
  237. # A anticommuting symmetric, B antisymmetric anticommuting,
  238. # no metric symmetry
  239. # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3
  240. # T_c = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3
  241. Mat = TensorIndexType('Mat', metric_symmetry=0, dummy_name='M')
  242. a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \
  243. tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Mat)
  244. A = TensorHead('A', [Mat]*3, TensorSymmetry.fully_symmetric(3), 1)
  245. B = TensorHead('B', [Mat]*2, TensorSymmetry.fully_symmetric(-2))
  246. t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3)
  247. tc = t.canon_bp()
  248. assert str(tc) == 'A(M_0, M_1, M_2)*A(-M_0, -M_1, -M_3)*B(-M_2, M_3)'
  249. # Gamma anticommuting
  250. # Gamma_{mu nu} * gamma^rho * Gamma^{nu mu alpha}
  251. # T_c = -Gamma^{mu nu} * gamma^rho * Gamma_{alpha mu nu}
  252. alpha, beta, gamma, mu, nu, rho = \
  253. tensor_indices('alpha,beta,gamma,mu,nu,rho', Lorentz)
  254. Gamma = TensorHead('Gamma', [Lorentz],
  255. TensorSymmetry.fully_symmetric(1), 2)
  256. Gamma2 = TensorHead('Gamma', [Lorentz]*2,
  257. TensorSymmetry.fully_symmetric(-2), 2)
  258. Gamma3 = TensorHead('Gamma', [Lorentz]*3,
  259. TensorSymmetry.fully_symmetric(-3), 2)
  260. t = Gamma2(-mu, -nu)*Gamma(rho)*Gamma3(nu, mu, alpha)
  261. tc = t.canon_bp()
  262. assert str(tc) == '-Gamma(L_0, L_1)*Gamma(rho)*Gamma(alpha, -L_0, -L_1)'
  263. # Gamma_{mu nu} * Gamma^{gamma beta} * gamma_rho * Gamma^{nu mu alpha}
  264. # T_c = Gamma^{mu nu} * Gamma^{beta gamma} * gamma_rho * Gamma^alpha_{mu nu}
  265. t = Gamma2(mu, nu)*Gamma2(beta, gamma)*Gamma(-rho)*Gamma3(alpha, -mu, -nu)
  266. tc = t.canon_bp()
  267. assert str(tc) == 'Gamma(L_0, L_1)*Gamma(beta, gamma)*Gamma(-rho)*Gamma(alpha, -L_0, -L_1)'
  268. # f^a_{b,c} antisymmetric in b,c; A_mu^a no symmetry
  269. # f^c_{d a} * f_{c e b} * A_mu^d * A_nu^a * A^{nu e} * A^{mu b}
  270. # g = [8,11,5, 9,13,7, 1,10, 3,4, 2,12, 0,6, 14,15]
  271. # T_c = -f^{a b c} * f_a^{d e} * A^mu_b * A_{mu d} * A^nu_c * A_{nu e}
  272. Flavor = TensorIndexType('Flavor', dummy_name='F')
  273. a, b, c, d, e, ff = tensor_indices('a,b,c,d,e,f', Flavor)
  274. mu, nu = tensor_indices('mu,nu', Lorentz)
  275. f = TensorHead('f', [Flavor]*3, TensorSymmetry.direct_product(1, -2))
  276. A = TensorHead('A', [Lorentz, Flavor], TensorSymmetry.no_symmetry(2))
  277. t = f(c, -d, -a)*f(-c, -e, -b)*A(-mu, d)*A(-nu, a)*A(nu, e)*A(mu, b)
  278. tc = t.canon_bp()
  279. assert str(tc) == '-f(F_0, F_1, F_2)*f(-F_0, F_3, F_4)*A(L_0, -F_1)*A(-L_0, -F_3)*A(L_1, -F_2)*A(-L_1, -F_4)'
  280. def test_bug_correction_tensor_indices():
  281. # to make sure that tensor_indices does not return a list if creating
  282. # only one index:
  283. A = TensorIndexType("A")
  284. i = tensor_indices('i', A)
  285. assert not isinstance(i, (tuple, list))
  286. assert isinstance(i, TensorIndex)
  287. def test_riemann_invariants():
  288. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  289. d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11 = \
  290. tensor_indices('d0:12', Lorentz)
  291. # R^{d0 d1}_{d1 d0}; ord = [d0,-d0,d1,-d1]
  292. # T_c = -R^{d0 d1}_{d0 d1}
  293. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  294. t = R(d0, d1, -d1, -d0)
  295. tc = t.canon_bp()
  296. assert str(tc) == '-R(L_0, L_1, -L_0, -L_1)'
  297. # R_d11^d1_d0^d5 * R^{d6 d4 d0}_d5 * R_{d7 d2 d8 d9} *
  298. # R_{d10 d3 d6 d4} * R^{d2 d7 d11}_d1 * R^{d8 d9 d3 d10}
  299. # can = [0,2,4,6, 1,3,8,10, 5,7,12,14, 9,11,16,18, 13,15,20,22,
  300. # 17,19,21<F10,23, 24,25]
  301. # T_c = R^{d0 d1 d2 d3} * R_{d0 d1}^{d4 d5} * R_{d2 d3}^{d6 d7} *
  302. # R_{d4 d5}^{d8 d9} * R_{d6 d7}^{d10 d11} * R_{d8 d9 d10 d11}
  303. t = R(-d11,d1,-d0,d5)*R(d6,d4,d0,-d5)*R(-d7,-d2,-d8,-d9)* \
  304. R(-d10,-d3,-d6,-d4)*R(d2,d7,d11,-d1)*R(d8,d9,d3,d10)
  305. tc = t.canon_bp()
  306. assert str(tc) == 'R(L_0, L_1, L_2, L_3)*R(-L_0, -L_1, L_4, L_5)*R(-L_2, -L_3, L_6, L_7)*R(-L_4, -L_5, L_8, L_9)*R(-L_6, -L_7, L_10, L_11)*R(-L_8, -L_9, -L_10, -L_11)'
  307. def test_riemann_products():
  308. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  309. d0, d1, d2, d3, d4, d5, d6 = tensor_indices('d0:7', Lorentz)
  310. a0, a1, a2, a3, a4, a5 = tensor_indices('a0:6', Lorentz)
  311. a, b = tensor_indices('a,b', Lorentz)
  312. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  313. # R^{a b d0}_d0 = 0
  314. t = R(a, b, d0, -d0)
  315. tc = t.canon_bp()
  316. assert tc == 0
  317. # R^{d0 b a}_d0
  318. # T_c = -R^{a d0 b}_d0
  319. t = R(d0, b, a, -d0)
  320. tc = t.canon_bp()
  321. assert str(tc) == '-R(a, L_0, b, -L_0)'
  322. # R^d1_d2^b_d0 * R^{d0 a}_d1^d2; ord=[a,b,d0,-d0,d1,-d1,d2,-d2]
  323. # T_c = -R^{a d0 d1 d2}* R^b_{d0 d1 d2}
  324. t = R(d1, -d2, b, -d0)*R(d0, a, -d1, d2)
  325. tc = t.canon_bp()
  326. assert str(tc) == '-R(a, L_0, L_1, L_2)*R(b, -L_0, -L_1, -L_2)'
  327. # A symmetric commuting
  328. # R^{d6 d5}_d2^d1 * R^{d4 d0 d2 d3} * A_{d6 d0} A_{d3 d1} * A_{d4 d5}
  329. # g = [12,10,5,2, 8,0,4,6, 13,1, 7,3, 9,11,14,15]
  330. # T_c = -R^{d0 d1 d2 d3} * R_d0^{d4 d5 d6} * A_{d1 d4}*A_{d2 d5}*A_{d3 d6}
  331. V = TensorHead('V', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  332. t = R(d6, d5, -d2, d1)*R(d4, d0, d2, d3)*V(-d6, -d0)*V(-d3, -d1)*V(-d4, -d5)
  333. tc = t.canon_bp()
  334. assert str(tc) == '-R(L_0, L_1, L_2, L_3)*R(-L_0, L_4, L_5, L_6)*V(-L_1, -L_4)*V(-L_2, -L_5)*V(-L_3, -L_6)'
  335. # R^{d2 a0 a2 d0} * R^d1_d2^{a1 a3} * R^{a4 a5}_{d0 d1}
  336. # T_c = R^{a0 d0 a2 d1}*R^{a1 a3}_d0^d2*R^{a4 a5}_{d1 d2}
  337. t = R(d2, a0, a2, d0)*R(d1, -d2, a1, a3)*R(a4, a5, -d0, -d1)
  338. tc = t.canon_bp()
  339. assert str(tc) == 'R(a0, L_0, a2, L_1)*R(a1, a3, -L_0, L_2)*R(a4, a5, -L_1, -L_2)'
  340. ######################################################################
  341. def test_canonicalize2():
  342. D = Symbol('D')
  343. Eucl = TensorIndexType('Eucl', metric_symmetry=1, dim=D, dummy_name='E')
  344. i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14 = \
  345. tensor_indices('i0:15', Eucl)
  346. A = TensorHead('A', [Eucl]*3, TensorSymmetry.fully_symmetric(-3))
  347. # two examples from Cvitanovic, Group Theory page 59
  348. # of identities for antisymmetric tensors of rank 3
  349. # contracted according to the Kuratowski graph eq.(6.59)
  350. t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i3,i7,i5)*A(-i2,-i5,i6)*A(-i4,-i6,i8)
  351. t1 = t.canon_bp()
  352. assert t1 == 0
  353. # eq.(6.60)
  354. #t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)*
  355. # A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i3,-i12,i14)
  356. t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)*\
  357. A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i9,-i12,i14)
  358. t1 = t.canon_bp()
  359. assert t1 == 0
  360. def test_canonicalize3():
  361. D = Symbol('D')
  362. Spinor = TensorIndexType('Spinor', dim=D, metric_symmetry=-1, dummy_name='S')
  363. a0,a1,a2,a3,a4 = tensor_indices('a0:5', Spinor)
  364. chi, psi = tensor_heads('chi,psi', [Spinor], TensorSymmetry.no_symmetry(1), 1)
  365. t = chi(a1)*psi(a0)
  366. t1 = t.canon_bp()
  367. assert t1 == t
  368. t = psi(a1)*chi(a0)
  369. t1 = t.canon_bp()
  370. assert t1 == -chi(a0)*psi(a1)
  371. def test_TensorIndexType():
  372. D = Symbol('D')
  373. Lorentz = TensorIndexType('Lorentz', metric_name='g', metric_symmetry=1,
  374. dim=D, dummy_name='L')
  375. m0, m1, m2, m3, m4 = tensor_indices('m0:5', Lorentz)
  376. sym2 = TensorSymmetry.fully_symmetric(2)
  377. sym2n = TensorSymmetry(*get_symmetric_group_sgs(2))
  378. assert sym2 == sym2n
  379. g = Lorentz.metric
  380. assert str(g) == 'g(Lorentz,Lorentz)'
  381. assert Lorentz.eps_dim == Lorentz.dim
  382. TSpace = TensorIndexType('TSpace', dummy_name = 'TSpace')
  383. i0, i1 = tensor_indices('i0 i1', TSpace)
  384. g = TSpace.metric
  385. A = TensorHead('A', [TSpace]*2, sym2)
  386. assert str(A(i0,-i0).canon_bp()) == 'A(TSpace_0, -TSpace_0)'
  387. def test_indices():
  388. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  389. a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
  390. assert a.tensor_index_type == Lorentz
  391. assert a != -a
  392. A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  393. t = A(a,b)*B(-b,c)
  394. indices = t.get_indices()
  395. L_0 = TensorIndex('L_0', Lorentz)
  396. assert indices == [a, L_0, -L_0, c]
  397. raises(ValueError, lambda: tensor_indices(3, Lorentz))
  398. raises(ValueError, lambda: A(a,b,c))
  399. A = TensorHead('A', [Lorentz, Lorentz])
  400. assert A('a', 'b') == A(TensorIndex('a', Lorentz),
  401. TensorIndex('b', Lorentz))
  402. assert A('a', '-b') == A(TensorIndex('a', Lorentz),
  403. TensorIndex('b', Lorentz, is_up=False))
  404. assert A('a', TensorIndex('b', Lorentz)) == A(TensorIndex('a', Lorentz),
  405. TensorIndex('b', Lorentz))
  406. def test_TensorSymmetry():
  407. assert TensorSymmetry.fully_symmetric(2) == \
  408. TensorSymmetry(get_symmetric_group_sgs(2))
  409. assert TensorSymmetry.fully_symmetric(-3) == \
  410. TensorSymmetry(get_symmetric_group_sgs(3, True))
  411. assert TensorSymmetry.direct_product(-4) == \
  412. TensorSymmetry.fully_symmetric(-4)
  413. assert TensorSymmetry.fully_symmetric(-1) == \
  414. TensorSymmetry.fully_symmetric(1)
  415. assert TensorSymmetry.direct_product(1, -1, 1) == \
  416. TensorSymmetry.no_symmetry(3)
  417. assert TensorSymmetry(get_symmetric_group_sgs(2)) == \
  418. TensorSymmetry(*get_symmetric_group_sgs(2))
  419. # TODO: add check for *get_symmetric_group_sgs(0)
  420. sym = TensorSymmetry.fully_symmetric(-3)
  421. assert sym.rank == 3
  422. assert sym.base == Tuple(0, 1)
  423. assert sym.generators == Tuple(Permutation(0, 1)(3, 4), Permutation(1, 2)(3, 4))
  424. def test_TensExpr():
  425. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  426. a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
  427. g = Lorentz.metric
  428. A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  429. raises(ValueError, lambda: g(c, d)/g(a, b))
  430. raises(ValueError, lambda: S.One/g(a, b))
  431. raises(ValueError, lambda: (A(c, d) + g(c, d))/g(a, b))
  432. raises(ValueError, lambda: S.One/(A(c, d) + g(c, d)))
  433. raises(ValueError, lambda: A(a, b) + A(a, c))
  434. #t = A(a, b) + B(a, b) # assigned to t for below
  435. #raises(NotImplementedError, lambda: TensExpr.__mul__(t, 'a'))
  436. #raises(NotImplementedError, lambda: TensExpr.__add__(t, 'a'))
  437. #raises(NotImplementedError, lambda: TensExpr.__radd__(t, 'a'))
  438. #raises(NotImplementedError, lambda: TensExpr.__sub__(t, 'a'))
  439. #raises(NotImplementedError, lambda: TensExpr.__rsub__(t, 'a'))
  440. #raises(NotImplementedError, lambda: TensExpr.__truediv__(t, 'a'))
  441. #raises(NotImplementedError, lambda: TensExpr.__rtruediv__(t, 'a'))
  442. with warns_deprecated_sympy():
  443. # DO NOT REMOVE THIS AFTER DEPRECATION REMOVED:
  444. raises(ValueError, lambda: A(a, b)**2)
  445. raises(NotImplementedError, lambda: 2**A(a, b))
  446. raises(NotImplementedError, lambda: abs(A(a, b)))
  447. def test_TensorHead():
  448. # simple example of algebraic expression
  449. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  450. A = TensorHead('A', [Lorentz]*2)
  451. assert A.name == 'A'
  452. assert A.index_types == [Lorentz, Lorentz]
  453. assert A.rank == 2
  454. assert A.symmetry == TensorSymmetry.no_symmetry(2)
  455. assert A.comm == 0
  456. def test_add1():
  457. assert TensAdd().args == ()
  458. assert TensAdd().doit() == 0
  459. # simple example of algebraic expression
  460. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  461. a,b,d0,d1,i,j,k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz)
  462. # A, B symmetric
  463. A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  464. t1 = A(b, -d0)*B(d0, a)
  465. assert TensAdd(t1).equals(t1)
  466. t2a = B(d0, a) + A(d0, a)
  467. t2 = A(b, -d0)*t2a
  468. assert str(t2) == 'A(b, -L_0)*(A(L_0, a) + B(L_0, a))'
  469. t2 = t2.expand()
  470. assert str(t2) == 'A(b, -L_0)*A(L_0, a) + A(b, -L_0)*B(L_0, a)'
  471. t2 = t2.canon_bp()
  472. assert str(t2) == 'A(a, L_0)*A(b, -L_0) + A(b, L_0)*B(a, -L_0)'
  473. t2b = t2 + t1
  474. assert str(t2b) == 'A(a, L_0)*A(b, -L_0) + A(b, -L_0)*B(L_0, a) + A(b, L_0)*B(a, -L_0)'
  475. t2b = t2b.canon_bp()
  476. assert str(t2b) == 'A(a, L_0)*A(b, -L_0) + 2*A(b, L_0)*B(a, -L_0)'
  477. p, q, r = tensor_heads('p,q,r', [Lorentz])
  478. t = q(d0)*2
  479. assert str(t) == '2*q(d0)'
  480. t = 2*q(d0)
  481. assert str(t) == '2*q(d0)'
  482. t1 = p(d0) + 2*q(d0)
  483. assert str(t1) == '2*q(d0) + p(d0)'
  484. t2 = p(-d0) + 2*q(-d0)
  485. assert str(t2) == '2*q(-d0) + p(-d0)'
  486. t1 = p(d0)
  487. t3 = t1*t2
  488. assert str(t3) == 'p(L_0)*(2*q(-L_0) + p(-L_0))'
  489. t3 = t3.expand()
  490. assert str(t3) == 'p(L_0)*p(-L_0) + 2*p(L_0)*q(-L_0)'
  491. t3 = t2*t1
  492. t3 = t3.expand()
  493. assert str(t3) == 'p(-L_0)*p(L_0) + 2*q(-L_0)*p(L_0)'
  494. t3 = t3.canon_bp()
  495. assert str(t3) == 'p(L_0)*p(-L_0) + 2*p(L_0)*q(-L_0)'
  496. t1 = p(d0) + 2*q(d0)
  497. t3 = t1*t2
  498. t3 = t3.canon_bp()
  499. assert str(t3) == 'p(L_0)*p(-L_0) + 4*p(L_0)*q(-L_0) + 4*q(L_0)*q(-L_0)'
  500. t1 = p(d0) - 2*q(d0)
  501. assert str(t1) == '-2*q(d0) + p(d0)'
  502. t2 = p(-d0) + 2*q(-d0)
  503. t3 = t1*t2
  504. t3 = t3.canon_bp()
  505. assert t3 == p(d0)*p(-d0) - 4*q(d0)*q(-d0)
  506. t = p(i)*p(j)*(p(k) + q(k)) + p(i)*(p(j) + q(j))*(p(k) - 3*q(k))
  507. t = t.canon_bp()
  508. assert t == 2*p(i)*p(j)*p(k) - 2*p(i)*p(j)*q(k) + p(i)*p(k)*q(j) - 3*p(i)*q(j)*q(k)
  509. t1 = (p(i) + q(i) + 2*r(i))*(p(j) - q(j))
  510. t2 = (p(j) + q(j) + 2*r(j))*(p(i) - q(i))
  511. t = t1 + t2
  512. t = t.canon_bp()
  513. assert t == 2*p(i)*p(j) + 2*p(i)*r(j) + 2*p(j)*r(i) - 2*q(i)*q(j) - 2*q(i)*r(j) - 2*q(j)*r(i)
  514. t = p(i)*q(j)/2
  515. assert 2*t == p(i)*q(j)
  516. t = (p(i) + q(i))/2
  517. assert 2*t == p(i) + q(i)
  518. t = S.One - p(i)*p(-i)
  519. t = t.canon_bp()
  520. tz1 = t + p(-j)*p(j)
  521. assert tz1 != 1
  522. tz1 = tz1.canon_bp()
  523. assert tz1.equals(1)
  524. t = S.One + p(i)*p(-i)
  525. assert (t - p(-j)*p(j)).canon_bp().equals(1)
  526. t = A(a, b) + B(a, b)
  527. assert t.rank == 2
  528. t1 = t - A(a, b) - B(a, b)
  529. assert t1 == 0
  530. t = 1 - (A(a, -a) + B(a, -a))
  531. t1 = 1 + (A(a, -a) + B(a, -a))
  532. assert (t + t1).expand().equals(2)
  533. t2 = 1 + A(a, -a)
  534. assert t1 != t2
  535. assert t2 != TensMul.from_data(0, [], [], [])
  536. #Test whether TensAdd.doit chokes on subterms that are zero.
  537. assert TensAdd(p(a), TensMul(0, p(a)) ).doit() == p(a)
  538. def test_special_eq_ne():
  539. # test special equality cases:
  540. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  541. a, b, d0, d1, i, j, k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz)
  542. # A, B symmetric
  543. A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  544. p, q, r = tensor_heads('p,q,r', [Lorentz])
  545. t = 0*A(a, b)
  546. assert _is_equal(t, 0)
  547. assert _is_equal(t, S.Zero)
  548. assert p(i) != A(a, b)
  549. assert A(a, -a) != A(a, b)
  550. assert 0*(A(a, b) + B(a, b)) == 0
  551. assert 0*(A(a, b) + B(a, b)) is S.Zero
  552. assert 3*(A(a, b) - A(a, b)) is S.Zero
  553. assert p(i) + q(i) != A(a, b)
  554. assert p(i) + q(i) != A(a, b) + B(a, b)
  555. assert p(i) - p(i) == 0
  556. assert p(i) - p(i) is S.Zero
  557. assert _is_equal(A(a, b), A(b, a))
  558. def test_add2():
  559. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  560. m, n, p, q = tensor_indices('m,n,p,q', Lorentz)
  561. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  562. A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(-3))
  563. t1 = 2*R(m, n, p, q) - R(m, q, n, p) + R(m, p, n, q)
  564. t2 = t1*A(-n, -p, -q)
  565. t2 = t2.canon_bp()
  566. assert t2 == 0
  567. t1 = Rational(2, 3)*R(m,n,p,q) - Rational(1, 3)*R(m,q,n,p) + Rational(1, 3)*R(m,p,n,q)
  568. t2 = t1*A(-n, -p, -q)
  569. t2 = t2.canon_bp()
  570. assert t2 == 0
  571. t = A(m, -m, n) + A(n, p, -p)
  572. t = t.canon_bp()
  573. assert t == 0
  574. def test_add3():
  575. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  576. i0, i1 = tensor_indices('i0:2', Lorentz)
  577. E, px, py, pz = symbols('E px py pz')
  578. A = TensorHead('A', [Lorentz])
  579. B = TensorHead('B', [Lorentz])
  580. expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2)
  581. assert expr1.args == (-E**2, px**2, py**2, pz**2, A(i0)*A(-i0))
  582. expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0)
  583. assert expr2.args == (E**2, -px**2, -py**2, -pz**2, -A(i0)*A(-i0))
  584. expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2
  585. assert expr3.args == (-E**2, px**2, py**2, pz**2, A(i0)*A(-i0))
  586. expr4 = B(i1)*B(-i1) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0)
  587. assert expr4.args == (2*E**2, -2*px**2, -2*py**2, -2*pz**2, B(i1)*B(-i1), -A(i0)*A(-i0))
  588. def test_mul():
  589. from sympy.abc import x
  590. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  591. a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
  592. t = TensMul.from_data(S.One, [], [], [])
  593. assert str(t) == '1'
  594. A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  595. t = (1 + x)*A(a, b)
  596. assert str(t) == '(x + 1)*A(a, b)'
  597. assert t.index_types == [Lorentz, Lorentz]
  598. assert t.rank == 2
  599. assert t.dum == []
  600. assert t.coeff == 1 + x
  601. assert sorted(t.free) == [(a, 0), (b, 1)]
  602. assert t.components == [A]
  603. ts = A(a, b)
  604. assert str(ts) == 'A(a, b)'
  605. assert ts.index_types == [Lorentz, Lorentz]
  606. assert ts.rank == 2
  607. assert ts.dum == []
  608. assert ts.coeff == 1
  609. assert sorted(ts.free) == [(a, 0), (b, 1)]
  610. assert ts.components == [A]
  611. t = A(-b, a)*B(-a, c)*A(-c, d)
  612. t1 = tensor_mul(*t.split())
  613. assert t == t1
  614. assert tensor_mul(*[]) == TensMul.from_data(S.One, [], [], [])
  615. t = TensMul.from_data(1, [], [], [])
  616. C = TensorHead('C', [])
  617. assert str(C()) == 'C'
  618. assert str(t) == '1'
  619. assert t == 1
  620. raises(ValueError, lambda: A(a, b)*A(a, c))
  621. def test_substitute_indices():
  622. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  623. i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz)
  624. A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  625. p = TensorHead('p', [Lorentz])
  626. t = p(i)
  627. t1 = t.substitute_indices((j, k))
  628. assert t1 == t
  629. t1 = t.substitute_indices((i, j))
  630. assert t1 == p(j)
  631. t1 = t.substitute_indices((i, -j))
  632. assert t1 == p(-j)
  633. t1 = t.substitute_indices((-i, j))
  634. assert t1 == p(-j)
  635. t1 = t.substitute_indices((-i, -j))
  636. assert t1 == p(j)
  637. t = A(m, n)
  638. t1 = t.substitute_indices((m, i), (n, -i))
  639. assert t1 == A(n, -n)
  640. t1 = substitute_indices(t, (m, i), (n, -i))
  641. assert t1 == A(n, -n)
  642. t = A(i, k)*B(-k, -j)
  643. t1 = t.substitute_indices((i, j), (j, k))
  644. t1a = A(j, l)*B(-l, -k)
  645. assert t1 == t1a
  646. t1 = substitute_indices(t, (i, j), (j, k))
  647. assert t1 == t1a
  648. t = A(i, j) + B(i, j)
  649. t1 = t.substitute_indices((j, -i))
  650. t1a = A(i, -i) + B(i, -i)
  651. assert t1 == t1a
  652. t1 = substitute_indices(t, (j, -i))
  653. assert t1 == t1a
  654. def test_riemann_cyclic_replace():
  655. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  656. m0, m1, m2, m3 = tensor_indices('m:4', Lorentz)
  657. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  658. t = R(m0, m2, m1, m3)
  659. t1 = riemann_cyclic_replace(t)
  660. t1a = Rational(-1, 3)*R(m0, m3, m2, m1) + Rational(1, 3)*R(m0, m1, m2, m3) + Rational(2, 3)*R(m0, m2, m1, m3)
  661. assert t1 == t1a
  662. def test_riemann_cyclic():
  663. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  664. i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz)
  665. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  666. t = R(i,j,k,l) + R(i,l,j,k) + R(i,k,l,j) - \
  667. R(i,j,l,k) - R(i,l,k,j) - R(i,k,j,l)
  668. t2 = t*R(-i,-j,-k,-l)
  669. t3 = riemann_cyclic(t2)
  670. assert t3 == 0
  671. t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
  672. t1 = riemann_cyclic(t)
  673. assert t1 == 0
  674. t = R(i,j,k,l)
  675. t1 = riemann_cyclic(t)
  676. assert t1 == Rational(-1, 3)*R(i, l, j, k) + Rational(1, 3)*R(i, k, j, l) + Rational(2, 3)*R(i, j, k, l)
  677. t = R(i,j,k,l)*R(-k,-l,m,n)*(R(-m,-n,-i,-j) + 2*R(-m,-j,-n,-i))
  678. t1 = riemann_cyclic(t)
  679. assert t1 == 0
  680. @XFAIL
  681. def test_div():
  682. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  683. m0, m1, m2, m3 = tensor_indices('m0:4', Lorentz)
  684. R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
  685. t = R(m0,m1,-m1,m3)
  686. t1 = t/S(4)
  687. assert str(t1) == '(1/4)*R(m0, L_0, -L_0, m3)'
  688. t = t.canon_bp()
  689. assert not t1._is_canon_bp
  690. t1 = t*4
  691. assert t1._is_canon_bp
  692. t1 = t1/4
  693. assert t1._is_canon_bp
  694. def test_contract_metric1():
  695. D = Symbol('D')
  696. Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L')
  697. a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz)
  698. g = Lorentz.metric
  699. p = TensorHead('p', [Lorentz])
  700. t = g(a, b)*p(-b)
  701. t1 = t.contract_metric(g)
  702. assert t1 == p(a)
  703. A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  704. # case with g with all free indices
  705. t1 = A(a,b)*B(-b,c)*g(d, e)
  706. t2 = t1.contract_metric(g)
  707. assert t1 == t2
  708. # case of g(d, -d)
  709. t1 = A(a,b)*B(-b,c)*g(-d, d)
  710. t2 = t1.contract_metric(g)
  711. assert t2 == D*A(a, d)*B(-d, c)
  712. # g with one free index
  713. t1 = A(a,b)*B(-b,-c)*g(c, d)
  714. t2 = t1.contract_metric(g)
  715. assert t2 == A(a, c)*B(-c, d)
  716. # g with both indices contracted with another tensor
  717. t1 = A(a,b)*B(-b,-c)*g(c, -a)
  718. t2 = t1.contract_metric(g)
  719. assert _is_equal(t2, A(a, b)*B(-b, -a))
  720. t1 = A(a,b)*B(-b,-c)*g(c, d)*g(-a, -d)
  721. t2 = t1.contract_metric(g)
  722. assert _is_equal(t2, A(a,b)*B(-b,-a))
  723. t1 = A(a,b)*g(-a,-b)
  724. t2 = t1.contract_metric(g)
  725. assert _is_equal(t2, A(a, -a))
  726. assert not t2.free
  727. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  728. a, b = tensor_indices('a,b', Lorentz)
  729. g = Lorentz.metric
  730. assert _is_equal(g(a, -a).contract_metric(g), Lorentz.dim) # no dim
  731. def test_contract_metric2():
  732. D = Symbol('D')
  733. Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L')
  734. a, b, c, d, e, L_0 = tensor_indices('a,b,c,d,e,L_0', Lorentz)
  735. g = Lorentz.metric
  736. p, q = tensor_heads('p,q', [Lorentz])
  737. t1 = g(a,b)*p(c)*p(-c)
  738. t2 = 3*g(-a,-b)*q(c)*q(-c)
  739. t = t1*t2
  740. t = t.contract_metric(g)
  741. assert t == 3*D*p(a)*p(-a)*q(b)*q(-b)
  742. t1 = g(a,b)*p(c)*p(-c)
  743. t2 = 3*q(-a)*q(-b)
  744. t = t1*t2
  745. t = t.contract_metric(g)
  746. t = t.canon_bp()
  747. assert t == 3*p(a)*p(-a)*q(b)*q(-b)
  748. t1 = 2*g(a,b)*p(c)*p(-c)
  749. t2 = - 3*g(-a,-b)*q(c)*q(-c)
  750. t = t1*t2
  751. t = t.contract_metric(g)
  752. t = 6*g(a,b)*g(-a,-b)*p(c)*p(-c)*q(d)*q(-d)
  753. t = t.contract_metric(g)
  754. t1 = 2*g(a,b)*p(c)*p(-c)
  755. t2 = q(-a)*q(-b) + 3*g(-a,-b)*q(c)*q(-c)
  756. t = t1*t2
  757. t = t.contract_metric(g)
  758. assert t == (2 + 6*D)*p(a)*p(-a)*q(b)*q(-b)
  759. t1 = p(a)*p(b) + p(a)*q(b) + 2*g(a,b)*p(c)*p(-c)
  760. t2 = q(-a)*q(-b) - g(-a,-b)*q(c)*q(-c)
  761. t = t1*t2
  762. t = t.contract_metric(g)
  763. t1 = (1 - 2*D)*p(a)*p(-a)*q(b)*q(-b) + p(a)*q(-a)*p(b)*q(-b)
  764. assert canon_bp(t - t1) == 0
  765. t = g(a,b)*g(c,d)*g(-b,-c)
  766. t1 = t.contract_metric(g)
  767. assert t1 == g(a, d)
  768. t1 = g(a,b)*g(c,d) + g(a,c)*g(b,d) + g(a,d)*g(b,c)
  769. t2 = t1.substitute_indices((a,-a),(b,-b),(c,-c),(d,-d))
  770. t = t1*t2
  771. t = t.contract_metric(g)
  772. assert t.equals(3*D**2 + 6*D)
  773. t = 2*p(a)*g(b,-b)
  774. t1 = t.contract_metric(g)
  775. assert t1.equals(2*D*p(a))
  776. t = 2*p(a)*g(b,-a)
  777. t1 = t.contract_metric(g)
  778. assert t1 == 2*p(b)
  779. M = Symbol('M')
  780. t = (p(a)*p(b) + g(a, b)*M**2)*g(-a, -b) - D*M**2
  781. t1 = t.contract_metric(g)
  782. assert t1 == p(a)*p(-a)
  783. A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  784. t = A(a, b)*p(L_0)*g(-a, -b)
  785. t1 = t.contract_metric(g)
  786. assert str(t1) == 'A(L_1, -L_1)*p(L_0)' or str(t1) == 'A(-L_1, L_1)*p(L_0)'
  787. def test_metric_contract3():
  788. D = Symbol('D')
  789. Spinor = TensorIndexType('Spinor', dim=D, metric_symmetry=-1, dummy_name='S')
  790. a0, a1, a2, a3, a4 = tensor_indices('a0:5', Spinor)
  791. C = Spinor.metric
  792. chi, psi = tensor_heads('chi,psi', [Spinor], TensorSymmetry.no_symmetry(1), 1)
  793. B = TensorHead('B', [Spinor]*2, TensorSymmetry.no_symmetry(2))
  794. t = C(a0,-a0)
  795. t1 = t.contract_metric(C)
  796. assert t1.equals(-D)
  797. t = C(-a0,a0)
  798. t1 = t.contract_metric(C)
  799. assert t1.equals(D)
  800. t = C(a0,a1)*C(-a0,-a1)
  801. t1 = t.contract_metric(C)
  802. assert t1.equals(D)
  803. t = C(a1,a0)*C(-a0,-a1)
  804. t1 = t.contract_metric(C)
  805. assert t1.equals(-D)
  806. t = C(-a0,a1)*C(a0,-a1)
  807. t1 = t.contract_metric(C)
  808. assert t1.equals(-D)
  809. t = C(a1,-a0)*C(a0,-a1)
  810. t1 = t.contract_metric(C)
  811. assert t1.equals(D)
  812. t = C(a0,a1)*B(-a1,-a0)
  813. t1 = t.contract_metric(C)
  814. t1 = t1.canon_bp()
  815. assert _is_equal(t1, B(a0,-a0))
  816. t = C(a1,a0)*B(-a1,-a0)
  817. t1 = t.contract_metric(C)
  818. assert _is_equal(t1, -B(a0,-a0))
  819. t = C(a0,-a1)*B(a1,-a0)
  820. t1 = t.contract_metric(C)
  821. assert _is_equal(t1, -B(a0,-a0))
  822. t = C(-a0,a1)*B(-a1,a0)
  823. t1 = t.contract_metric(C)
  824. assert _is_equal(t1, -B(a0,-a0))
  825. t = C(-a0,-a1)*B(a1,a0)
  826. t1 = t.contract_metric(C)
  827. assert _is_equal(t1, B(a0,-a0))
  828. t = C(-a1, a0)*B(a1,-a0)
  829. t1 = t.contract_metric(C)
  830. assert _is_equal(t1, B(a0,-a0))
  831. t = C(a0,a1)*psi(-a1)
  832. t1 = t.contract_metric(C)
  833. assert _is_equal(t1, psi(a0))
  834. t = C(a1,a0)*psi(-a1)
  835. t1 = t.contract_metric(C)
  836. assert _is_equal(t1, -psi(a0))
  837. t = C(a0,a1)*chi(-a0)*psi(-a1)
  838. t1 = t.contract_metric(C)
  839. assert _is_equal(t1, -chi(a1)*psi(-a1))
  840. t = C(a1,a0)*chi(-a0)*psi(-a1)
  841. t1 = t.contract_metric(C)
  842. assert _is_equal(t1, chi(a1)*psi(-a1))
  843. t = C(-a1,a0)*chi(-a0)*psi(a1)
  844. t1 = t.contract_metric(C)
  845. assert _is_equal(t1, chi(-a1)*psi(a1))
  846. t = C(a0,-a1)*chi(-a0)*psi(a1)
  847. t1 = t.contract_metric(C)
  848. assert _is_equal(t1, -chi(-a1)*psi(a1))
  849. t = C(-a0,-a1)*chi(a0)*psi(a1)
  850. t1 = t.contract_metric(C)
  851. assert _is_equal(t1, chi(-a1)*psi(a1))
  852. t = C(-a1,-a0)*chi(a0)*psi(a1)
  853. t1 = t.contract_metric(C)
  854. assert _is_equal(t1, -chi(-a1)*psi(a1))
  855. t = C(-a1,-a0)*B(a0,a2)*psi(a1)
  856. t1 = t.contract_metric(C)
  857. assert _is_equal(t1, -B(-a1,a2)*psi(a1))
  858. t = C(a1,a0)*B(-a2,-a0)*psi(-a1)
  859. t1 = t.contract_metric(C)
  860. assert _is_equal(t1, B(-a2,a1)*psi(-a1))
  861. def test_contract_metric4():
  862. R3 = TensorIndexType('R3', dim=3)
  863. p, q, r = tensor_indices("p q r", R3)
  864. delta = R3.delta
  865. eps = R3.epsilon
  866. K = TensorHead("K", [R3])
  867. #Check whether contract_metric chokes on an expandable expression which becomes zero on canonicalization (issue #24354)
  868. expr = eps(p,q,r)*( K(-p)*K(-q) + delta(-p,-q) )
  869. assert expr.contract_metric(delta) == 0
  870. def test_epsilon():
  871. Lorentz = TensorIndexType('Lorentz', dim=4, dummy_name='L')
  872. a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz)
  873. epsilon = Lorentz.epsilon
  874. p, q, r, s = tensor_heads('p,q,r,s', [Lorentz])
  875. t = epsilon(b,a,c,d)
  876. t1 = t.canon_bp()
  877. assert t1 == -epsilon(a,b,c,d)
  878. t = epsilon(c,b,d,a)
  879. t1 = t.canon_bp()
  880. assert t1 == epsilon(a,b,c,d)
  881. t = epsilon(c,a,d,b)
  882. t1 = t.canon_bp()
  883. assert t1 == -epsilon(a,b,c,d)
  884. t = epsilon(a,b,c,d)*p(-a)*q(-b)
  885. t1 = t.canon_bp()
  886. assert t1 == epsilon(c,d,a,b)*p(-a)*q(-b)
  887. t = epsilon(c,b,d,a)*p(-a)*q(-b)
  888. t1 = t.canon_bp()
  889. assert t1 == epsilon(c,d,a,b)*p(-a)*q(-b)
  890. t = epsilon(c,a,d,b)*p(-a)*q(-b)
  891. t1 = t.canon_bp()
  892. assert t1 == -epsilon(c,d,a,b)*p(-a)*q(-b)
  893. t = epsilon(c,a,d,b)*p(-a)*p(-b)
  894. t1 = t.canon_bp()
  895. assert t1 == 0
  896. t = epsilon(c,a,d,b)*p(-a)*q(-b) + epsilon(a,b,c,d)*p(-b)*q(-a)
  897. t1 = t.canon_bp()
  898. assert t1 == -2*epsilon(c,d,a,b)*p(-a)*q(-b)
  899. # Test that epsilon can be create with a SymPy integer:
  900. Lorentz = TensorIndexType('Lorentz', dim=Integer(4), dummy_name='L')
  901. epsilon = Lorentz.epsilon
  902. assert isinstance(epsilon, TensorHead)
  903. def test_contract_delta1():
  904. # see Group Theory by Cvitanovic page 9
  905. n = Symbol('n')
  906. Color = TensorIndexType('Color', dim=n, dummy_name='C')
  907. a, b, c, d, e, f = tensor_indices('a,b,c,d,e,f', Color)
  908. delta = Color.delta
  909. def idn(a, b, d, c):
  910. assert a.is_up and d.is_up
  911. assert not (b.is_up or c.is_up)
  912. return delta(a,c)*delta(d,b)
  913. def T(a, b, d, c):
  914. assert a.is_up and d.is_up
  915. assert not (b.is_up or c.is_up)
  916. return delta(a,b)*delta(d,c)
  917. def P1(a, b, c, d):
  918. return idn(a,b,c,d) - 1/n*T(a,b,c,d)
  919. def P2(a, b, c, d):
  920. return 1/n*T(a,b,c,d)
  921. t = P1(a, -b, e, -f)*P1(f, -e, d, -c)
  922. t1 = t.contract_delta(delta)
  923. assert canon_bp(t1 - P1(a, -b, d, -c)) == 0
  924. t = P2(a, -b, e, -f)*P2(f, -e, d, -c)
  925. t1 = t.contract_delta(delta)
  926. assert t1 == P2(a, -b, d, -c)
  927. t = P1(a, -b, e, -f)*P2(f, -e, d, -c)
  928. t1 = t.contract_delta(delta)
  929. assert t1 == 0
  930. t = P1(a, -b, b, -a)
  931. t1 = t.contract_delta(delta)
  932. assert t1.equals(n**2 - 1)
  933. def test_fun():
  934. with warns_deprecated_sympy():
  935. D = Symbol('D')
  936. Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L')
  937. a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz)
  938. g = Lorentz.metric
  939. p, q = tensor_heads('p q', [Lorentz])
  940. t = q(c)*p(a)*q(b) + g(a,b)*g(c,d)*q(-d)
  941. assert t(a,b,c) == t
  942. assert canon_bp(t - t(b,a,c) - q(c)*p(a)*q(b) + q(c)*p(b)*q(a)) == 0
  943. assert t(b,c,d) == q(d)*p(b)*q(c) + g(b,c)*g(d,e)*q(-e)
  944. t1 = t.substitute_indices((a,b),(b,a))
  945. assert canon_bp(t1 - q(c)*p(b)*q(a) - g(a,b)*g(c,d)*q(-d)) == 0
  946. # check that g_{a b; c} = 0
  947. # example taken from L. Brewin
  948. # "A brief introduction to Cadabra" arxiv:0903.2085
  949. # dg_{a b c} = \partial_{a} g_{b c} is symmetric in b, c
  950. dg = TensorHead('dg', [Lorentz]*3, TensorSymmetry.direct_product(1, 2))
  951. # gamma^a_{b c} is the Christoffel symbol
  952. gamma = S.Half*g(a,d)*(dg(-b,-d,-c) + dg(-c,-b,-d) - dg(-d,-b,-c))
  953. # t = g_{a b; c}
  954. t = dg(-c,-a,-b) - g(-a,-d)*gamma(d,-b,-c) - g(-b,-d)*gamma(d,-a,-c)
  955. t = t.contract_metric(g)
  956. assert t == 0
  957. t = q(c)*p(a)*q(b)
  958. assert t(b,c,d) == q(d)*p(b)*q(c)
  959. def test_TensorManager():
  960. Lorentz = TensorIndexType('Lorentz', dummy_name='L')
  961. LorentzH = TensorIndexType('LorentzH', dummy_name='LH')
  962. i, j = tensor_indices('i,j', Lorentz)
  963. ih, jh = tensor_indices('ih,jh', LorentzH)
  964. p, q = tensor_heads('p q', [Lorentz])
  965. ph, qh = tensor_heads('ph qh', [LorentzH])
  966. Gsymbol = Symbol('Gsymbol')
  967. GHsymbol = Symbol('GHsymbol')
  968. TensorManager.set_comm(Gsymbol, GHsymbol, 0)
  969. G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), Gsymbol)
  970. assert TensorManager._comm_i2symbol[G.comm] == Gsymbol
  971. GH = TensorHead('GH', [LorentzH], TensorSymmetry.no_symmetry(1), GHsymbol)
  972. ps = G(i)*p(-i)
  973. psh = GH(ih)*ph(-ih)
  974. t = ps + psh
  975. t1 = t*t
  976. assert canon_bp(t1 - ps*ps - 2*ps*psh - psh*psh) == 0
  977. qs = G(i)*q(-i)
  978. qsh = GH(ih)*qh(-ih)
  979. assert _is_equal(ps*qsh, qsh*ps)
  980. assert not _is_equal(ps*qs, qs*ps)
  981. n = TensorManager.comm_symbols2i(Gsymbol)
  982. assert TensorManager.comm_i2symbol(n) == Gsymbol
  983. assert GHsymbol in TensorManager._comm_symbols2i
  984. raises(ValueError, lambda: TensorManager.set_comm(GHsymbol, 1, 2))
  985. TensorManager.set_comms((Gsymbol,GHsymbol,0),(Gsymbol,1,1))
  986. assert TensorManager.get_comm(n, 1) == TensorManager.get_comm(1, n) == 1
  987. TensorManager.clear()
  988. assert TensorManager.comm == [{0:0, 1:0, 2:0}, {0:0, 1:1, 2:None}, {0:0, 1:None}]
  989. assert GHsymbol not in TensorManager._comm_symbols2i
  990. nh = TensorManager.comm_symbols2i(GHsymbol)
  991. assert TensorManager.comm_i2symbol(nh) == GHsymbol
  992. assert GHsymbol in TensorManager._comm_symbols2i
  993. def test_hash():
  994. D = Symbol('D')
  995. Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L')
  996. a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz)
  997. g = Lorentz.metric
  998. p, q = tensor_heads('p q', [Lorentz])
  999. p_type = p.args[1]
  1000. t1 = p(a)*q(b)
  1001. t2 = p(a)*p(b)
  1002. assert hash(t1) != hash(t2)
  1003. t3 = p(a)*p(b) + g(a,b)
  1004. t4 = p(a)*p(b) - g(a,b)
  1005. assert hash(t3) != hash(t4)
  1006. assert a.func(*a.args) == a
  1007. assert Lorentz.func(*Lorentz.args) == Lorentz
  1008. assert g.func(*g.args) == g
  1009. assert p.func(*p.args) == p
  1010. assert p_type.func(*p_type.args) == p_type
  1011. assert p(a).func(*(p(a)).args) == p(a)
  1012. assert t1.func(*t1.args) == t1
  1013. assert t2.func(*t2.args) == t2
  1014. assert t3.func(*t3.args) == t3
  1015. assert t4.func(*t4.args) == t4
  1016. assert hash(a.func(*a.args)) == hash(a)
  1017. assert hash(Lorentz.func(*Lorentz.args)) == hash(Lorentz)
  1018. assert hash(g.func(*g.args)) == hash(g)
  1019. assert hash(p.func(*p.args)) == hash(p)
  1020. assert hash(p_type.func(*p_type.args)) == hash(p_type)
  1021. assert hash(p(a).func(*(p(a)).args)) == hash(p(a))
  1022. assert hash(t1.func(*t1.args)) == hash(t1)
  1023. assert hash(t2.func(*t2.args)) == hash(t2)
  1024. assert hash(t3.func(*t3.args)) == hash(t3)
  1025. assert hash(t4.func(*t4.args)) == hash(t4)
  1026. def check_all(obj):
  1027. return all([isinstance(_, Basic) for _ in obj.args])
  1028. assert check_all(a)
  1029. assert check_all(Lorentz)
  1030. assert check_all(g)
  1031. assert check_all(p)
  1032. assert check_all(p_type)
  1033. assert check_all(p(a))
  1034. assert check_all(t1)
  1035. assert check_all(t2)
  1036. assert check_all(t3)
  1037. assert check_all(t4)
  1038. tsymmetry = TensorSymmetry.direct_product(-2, 1, 3)
  1039. assert tsymmetry.func(*tsymmetry.args) == tsymmetry
  1040. assert hash(tsymmetry.func(*tsymmetry.args)) == hash(tsymmetry)
  1041. assert check_all(tsymmetry)
  1042. ### TEST VALUED TENSORS ###
  1043. def _get_valued_base_test_variables():
  1044. minkowski = Matrix((
  1045. (1, 0, 0, 0),
  1046. (0, -1, 0, 0),
  1047. (0, 0, -1, 0),
  1048. (0, 0, 0, -1),
  1049. ))
  1050. Lorentz = TensorIndexType('Lorentz', dim=4)
  1051. Lorentz.data = minkowski
  1052. i0, i1, i2, i3, i4 = tensor_indices('i0:5', Lorentz)
  1053. E, px, py, pz = symbols('E px py pz')
  1054. A = TensorHead('A', [Lorentz])
  1055. A.data = [E, px, py, pz]
  1056. B = TensorHead('B', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm')
  1057. B.data = range(4)
  1058. AB = TensorHead("AB", [Lorentz]*2)
  1059. AB.data = minkowski
  1060. ba_matrix = Matrix((
  1061. (1, 2, 3, 4),
  1062. (5, 6, 7, 8),
  1063. (9, 0, -1, -2),
  1064. (-3, -4, -5, -6),
  1065. ))
  1066. BA = TensorHead("BA", [Lorentz]*2)
  1067. BA.data = ba_matrix
  1068. # Let's test the diagonal metric, with inverted Minkowski metric:
  1069. LorentzD = TensorIndexType('LorentzD')
  1070. LorentzD.data = [-1, 1, 1, 1]
  1071. mu0, mu1, mu2 = tensor_indices('mu0:3', LorentzD)
  1072. C = TensorHead('C', [LorentzD])
  1073. C.data = [E, px, py, pz]
  1074. ### non-diagonal metric ###
  1075. ndm_matrix = (
  1076. (1, 1, 0,),
  1077. (1, 0, 1),
  1078. (0, 1, 0,),
  1079. )
  1080. ndm = TensorIndexType("ndm")
  1081. ndm.data = ndm_matrix
  1082. n0, n1, n2 = tensor_indices('n0:3', ndm)
  1083. NA = TensorHead('NA', [ndm])
  1084. NA.data = range(10, 13)
  1085. NB = TensorHead('NB', [ndm]*2)
  1086. NB.data = [[i+j for j in range(10, 13)] for i in range(10, 13)]
  1087. NC = TensorHead('NC', [ndm]*3)
  1088. NC.data = [[[i+j+k for k in range(4, 7)] for j in range(1, 4)] for i in range(2, 5)]
  1089. return (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1090. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4)
  1091. def test_valued_tensor_iter():
  1092. with warns_deprecated_sympy():
  1093. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1094. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1095. list_BA = [Array([1, 2, 3, 4]), Array([5, 6, 7, 8]), Array([9, 0, -1, -2]), Array([-3, -4, -5, -6])]
  1096. # iteration on VTensorHead
  1097. assert list(A) == [E, px, py, pz]
  1098. assert list(ba_matrix) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -1, -2, -3, -4, -5, -6]
  1099. assert list(BA) == list_BA
  1100. # iteration on VTensMul
  1101. assert list(A(i1)) == [E, px, py, pz]
  1102. assert list(BA(i1, i2)) == list_BA
  1103. assert list(3 * BA(i1, i2)) == [3 * i for i in list_BA]
  1104. assert list(-5 * BA(i1, i2)) == [-5 * i for i in list_BA]
  1105. # iteration on VTensAdd
  1106. # A(i1) + A(i1)
  1107. assert list(A(i1) + A(i1)) == [2*E, 2*px, 2*py, 2*pz]
  1108. assert BA(i1, i2) - BA(i1, i2) == 0
  1109. assert list(BA(i1, i2) - 2 * BA(i1, i2)) == [-i for i in list_BA]
  1110. def test_valued_tensor_covariant_contravariant_elements():
  1111. with warns_deprecated_sympy():
  1112. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1113. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1114. assert A(-i0)[0] == A(i0)[0]
  1115. assert A(-i0)[1] == -A(i0)[1]
  1116. assert AB(i0, i1)[1, 1] == -1
  1117. assert AB(i0, -i1)[1, 1] == 1
  1118. assert AB(-i0, -i1)[1, 1] == -1
  1119. assert AB(-i0, i1)[1, 1] == 1
  1120. def test_valued_tensor_get_matrix():
  1121. with warns_deprecated_sympy():
  1122. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1123. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1124. matab = AB(i0, i1).get_matrix()
  1125. assert matab == Matrix([
  1126. [1, 0, 0, 0],
  1127. [0, -1, 0, 0],
  1128. [0, 0, -1, 0],
  1129. [0, 0, 0, -1],
  1130. ])
  1131. # when alternating contravariant/covariant with [1, -1, -1, -1] metric
  1132. # it becomes the identity matrix:
  1133. assert AB(i0, -i1).get_matrix() == eye(4)
  1134. # covariant and contravariant forms:
  1135. assert A(i0).get_matrix() == Matrix([E, px, py, pz])
  1136. assert A(-i0).get_matrix() == Matrix([E, -px, -py, -pz])
  1137. def test_valued_tensor_contraction():
  1138. with warns_deprecated_sympy():
  1139. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1140. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1141. assert (A(i0) * A(-i0)).data == E ** 2 - px ** 2 - py ** 2 - pz ** 2
  1142. assert (A(i0) * A(-i0)).data == A ** 2
  1143. assert (A(i0) * A(-i0)).data == A(i0) ** 2
  1144. assert (A(i0) * B(-i0)).data == -px - 2 * py - 3 * pz
  1145. for i in range(4):
  1146. for j in range(4):
  1147. assert (A(i0) * B(-i1))[i, j] == [E, px, py, pz][i] * [0, -1, -2, -3][j]
  1148. # test contraction on the alternative Minkowski metric: [-1, 1, 1, 1]
  1149. assert (C(mu0) * C(-mu0)).data == -E ** 2 + px ** 2 + py ** 2 + pz ** 2
  1150. contrexp = A(i0) * AB(i1, -i0)
  1151. assert A(i0).rank == 1
  1152. assert AB(i1, -i0).rank == 2
  1153. assert contrexp.rank == 1
  1154. for i in range(4):
  1155. assert contrexp[i] == [E, px, py, pz][i]
  1156. def test_valued_tensor_self_contraction():
  1157. with warns_deprecated_sympy():
  1158. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1159. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1160. assert AB(i0, -i0).data == 4
  1161. assert BA(i0, -i0).data == 2
  1162. def test_valued_tensor_pow():
  1163. with warns_deprecated_sympy():
  1164. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1165. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1166. assert C**2 == -E**2 + px**2 + py**2 + pz**2
  1167. assert C**1 == sqrt(-E**2 + px**2 + py**2 + pz**2)
  1168. assert C(mu0)**2 == C**2
  1169. assert C(mu0)**1 == C**1
  1170. def test_valued_tensor_expressions():
  1171. with warns_deprecated_sympy():
  1172. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1173. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1174. x1, x2, x3 = symbols('x1:4')
  1175. # test coefficient in contraction:
  1176. rank2coeff = x1 * A(i3) * B(i2)
  1177. assert rank2coeff[1, 1] == x1 * px
  1178. assert rank2coeff[3, 3] == 3 * pz * x1
  1179. coeff_expr = ((x1 * A(i4)) * (B(-i4) / x2)).data
  1180. assert coeff_expr.expand() == -px*x1/x2 - 2*py*x1/x2 - 3*pz*x1/x2
  1181. add_expr = A(i0) + B(i0)
  1182. assert add_expr[0] == E
  1183. assert add_expr[1] == px + 1
  1184. assert add_expr[2] == py + 2
  1185. assert add_expr[3] == pz + 3
  1186. sub_expr = A(i0) - B(i0)
  1187. assert sub_expr[0] == E
  1188. assert sub_expr[1] == px - 1
  1189. assert sub_expr[2] == py - 2
  1190. assert sub_expr[3] == pz - 3
  1191. assert (add_expr * B(-i0)).data == -px - 2*py - 3*pz - 14
  1192. expr1 = x1*A(i0) + x2*B(i0)
  1193. expr2 = expr1 * B(i1) * (-4)
  1194. expr3 = expr2 + 3*x3*AB(i0, i1)
  1195. expr4 = expr3 / 2
  1196. assert expr4 * 2 == expr3
  1197. expr5 = (expr4 * BA(-i1, -i0))
  1198. assert expr5.data.expand() == 28*E*x1 + 12*px*x1 + 20*py*x1 + 28*pz*x1 + 136*x2 + 3*x3
  1199. def test_valued_tensor_add_scalar():
  1200. with warns_deprecated_sympy():
  1201. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1202. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1203. # one scalar summand after the contracted tensor
  1204. expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2)
  1205. assert expr1.data == 0
  1206. # multiple scalar summands in front of the contracted tensor
  1207. expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0)
  1208. assert expr2.data == 0
  1209. # multiple scalar summands after the contracted tensor
  1210. expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2
  1211. assert expr3.data == 0
  1212. # multiple scalar summands and multiple tensors
  1213. expr4 = C(mu0)*C(-mu0) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0)
  1214. assert expr4.data == 0
  1215. def test_noncommuting_components():
  1216. with warns_deprecated_sympy():
  1217. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1218. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1219. euclid = TensorIndexType('Euclidean')
  1220. euclid.data = [1, 1]
  1221. i1, i2, i3 = tensor_indices('i1:4', euclid)
  1222. a, b, c, d = symbols('a b c d', commutative=False)
  1223. V1 = TensorHead('V1', [euclid]*2)
  1224. V1.data = [[a, b], (c, d)]
  1225. V2 = TensorHead('V2', [euclid]*2)
  1226. V2.data = [[a, c], [b, d]]
  1227. vtp = V1(i1, i2) * V2(-i2, -i1)
  1228. assert vtp.data == a**2 + b**2 + c**2 + d**2
  1229. assert vtp.data != a**2 + 2*b*c + d**2
  1230. vtp2 = V1(i1, i2)*V1(-i2, -i1)
  1231. assert vtp2.data == a**2 + b*c + c*b + d**2
  1232. assert vtp2.data != a**2 + 2*b*c + d**2
  1233. Vc = (b * V1(i1, -i1)).data
  1234. assert Vc.expand() == b * a + b * d
  1235. def test_valued_non_diagonal_metric():
  1236. with warns_deprecated_sympy():
  1237. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1238. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1239. mmatrix = Matrix(ndm_matrix)
  1240. assert (NA(n0)*NA(-n0)).data == (NA(n0).get_matrix().T * mmatrix * NA(n0).get_matrix())[0, 0]
  1241. def test_valued_assign_numpy_ndarray():
  1242. with warns_deprecated_sympy():
  1243. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1244. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1245. # this is needed to make sure that a numpy.ndarray can be assigned to a
  1246. # tensor.
  1247. arr = [E+1, px-1, py, pz]
  1248. A.data = Array(arr)
  1249. for i in range(4):
  1250. assert A(i0).data[i] == arr[i]
  1251. qx, qy, qz = symbols('qx qy qz')
  1252. A(-i0).data = Array([E, qx, qy, qz])
  1253. for i in range(4):
  1254. assert A(i0).data[i] == [E, -qx, -qy, -qz][i]
  1255. assert A.data[i] == [E, -qx, -qy, -qz][i]
  1256. # test on multi-indexed tensors.
  1257. random_4x4_data = [[(i**3-3*i**2)%(j+7) for i in range(4)] for j in range(4)]
  1258. AB(-i0, -i1).data = random_4x4_data
  1259. for i in range(4):
  1260. for j in range(4):
  1261. assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1)
  1262. assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1)
  1263. assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)
  1264. assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j]
  1265. AB(-i0, i1).data = random_4x4_data
  1266. for i in range(4):
  1267. for j in range(4):
  1268. assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)
  1269. assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j]
  1270. assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1)
  1271. assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1)
  1272. def test_valued_metric_inverse():
  1273. with warns_deprecated_sympy():
  1274. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1275. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1276. # let's assign some fancy matrix, just to verify it:
  1277. # (this has no physical sense, it's just testing sympy);
  1278. # it is symmetrical:
  1279. md = [[2, 2, 2, 1], [2, 3, 1, 0], [2, 1, 2, 3], [1, 0, 3, 2]]
  1280. Lorentz.data = md
  1281. m = Matrix(md)
  1282. metric = Lorentz.metric
  1283. minv = m.inv()
  1284. meye = eye(4)
  1285. # the Kronecker Delta:
  1286. KD = Lorentz.get_kronecker_delta()
  1287. for i in range(4):
  1288. for j in range(4):
  1289. assert metric(i0, i1).data[i, j] == m[i, j]
  1290. assert metric(-i0, -i1).data[i, j] == minv[i, j]
  1291. assert metric(i0, -i1).data[i, j] == meye[i, j]
  1292. assert metric(-i0, i1).data[i, j] == meye[i, j]
  1293. assert metric(i0, i1)[i, j] == m[i, j]
  1294. assert metric(-i0, -i1)[i, j] == minv[i, j]
  1295. assert metric(i0, -i1)[i, j] == meye[i, j]
  1296. assert metric(-i0, i1)[i, j] == meye[i, j]
  1297. assert KD(i0, -i1)[i, j] == meye[i, j]
  1298. def test_valued_canon_bp_swapaxes():
  1299. with warns_deprecated_sympy():
  1300. (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1,
  1301. n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables()
  1302. e1 = A(i1)*A(i0)
  1303. e2 = e1.canon_bp()
  1304. assert e2 == A(i0)*A(i1)
  1305. for i in range(4):
  1306. for j in range(4):
  1307. assert e1[i, j] == e2[j, i]
  1308. o1 = B(i2)*A(i1)*B(i0)
  1309. o2 = o1.canon_bp()
  1310. for i in range(4):
  1311. for j in range(4):
  1312. for k in range(4):
  1313. assert o1[i, j, k] == o2[j, i, k]
  1314. def test_valued_components_with_wrong_symmetry():
  1315. with warns_deprecated_sympy():
  1316. IT = TensorIndexType('IT', dim=3)
  1317. i0, i1, i2, i3 = tensor_indices('i0:4', IT)
  1318. IT.data = [1, 1, 1]
  1319. A_nosym = TensorHead('A', [IT]*2)
  1320. A_sym = TensorHead('A', [IT]*2, TensorSymmetry.fully_symmetric(2))
  1321. A_antisym = TensorHead('A', [IT]*2, TensorSymmetry.fully_symmetric(-2))
  1322. mat_nosym = Matrix([[1,2,3],[4,5,6],[7,8,9]])
  1323. mat_sym = mat_nosym + mat_nosym.T
  1324. mat_antisym = mat_nosym - mat_nosym.T
  1325. A_nosym.data = mat_nosym
  1326. A_nosym.data = mat_sym
  1327. A_nosym.data = mat_antisym
  1328. def assign(A, dat):
  1329. A.data = dat
  1330. A_sym.data = mat_sym
  1331. raises(ValueError, lambda: assign(A_sym, mat_nosym))
  1332. raises(ValueError, lambda: assign(A_sym, mat_antisym))
  1333. A_antisym.data = mat_antisym
  1334. raises(ValueError, lambda: assign(A_antisym, mat_sym))
  1335. raises(ValueError, lambda: assign(A_antisym, mat_nosym))
  1336. A_sym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
  1337. A_antisym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
  1338. def test_issue_10972_TensMul_data():
  1339. with warns_deprecated_sympy():
  1340. Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='i', dim=2)
  1341. Lorentz.data = [-1, 1]
  1342. mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta',
  1343. Lorentz)
  1344. u = TensorHead('u', [Lorentz])
  1345. u.data = [1, 0]
  1346. F = TensorHead('F', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
  1347. F.data = [[0, 1],
  1348. [-1, 0]]
  1349. mul_1 = F(mu, alpha) * u(-alpha) * F(nu, beta) * u(-beta)
  1350. assert (mul_1.data == Array([[0, 0], [0, 1]]))
  1351. mul_2 = F(mu, alpha) * F(nu, beta) * u(-alpha) * u(-beta)
  1352. assert (mul_2.data == mul_1.data)
  1353. assert ((mul_1 + mul_1).data == 2 * mul_1.data)
  1354. def test_TensMul_data():
  1355. with warns_deprecated_sympy():
  1356. Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='L', dim=4)
  1357. Lorentz.data = [-1, 1, 1, 1]
  1358. mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta',
  1359. Lorentz)
  1360. u = TensorHead('u', [Lorentz])
  1361. u.data = [1, 0, 0, 0]
  1362. F = TensorHead('F', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
  1363. Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
  1364. F.data = [
  1365. [0, Ex, Ey, Ez],
  1366. [-Ex, 0, Bz, -By],
  1367. [-Ey, -Bz, 0, Bx],
  1368. [-Ez, By, -Bx, 0]]
  1369. E = F(mu, nu) * u(-nu)
  1370. assert ((E(mu) * E(nu)).data ==
  1371. Array([[0, 0, 0, 0],
  1372. [0, Ex ** 2, Ex * Ey, Ex * Ez],
  1373. [0, Ex * Ey, Ey ** 2, Ey * Ez],
  1374. [0, Ex * Ez, Ey * Ez, Ez ** 2]])
  1375. )
  1376. assert ((E(mu) * E(nu)).canon_bp().data == (E(mu) * E(nu)).data)
  1377. assert ((F(mu, alpha) * F(beta, nu) * u(-alpha) * u(-beta)).data ==
  1378. - (E(mu) * E(nu)).data
  1379. )
  1380. assert ((F(alpha, mu) * F(beta, nu) * u(-alpha) * u(-beta)).data ==
  1381. (E(mu) * E(nu)).data
  1382. )
  1383. g = TensorHead('g', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  1384. g.data = Lorentz.data
  1385. # tensor 'perp' is orthogonal to vector 'u'
  1386. perp = u(mu) * u(nu) + g(mu, nu)
  1387. mul_1 = u(-mu) * perp(mu, nu)
  1388. assert (mul_1.data == Array([0, 0, 0, 0]))
  1389. mul_2 = u(-mu) * perp(mu, alpha) * perp(nu, beta)
  1390. assert (mul_2.data == Array.zeros(4, 4, 4))
  1391. Fperp = perp(mu, alpha) * perp(nu, beta) * F(-alpha, -beta)
  1392. assert (Fperp.data[0, :] == Array([0, 0, 0, 0]))
  1393. assert (Fperp.data[:, 0] == Array([0, 0, 0, 0]))
  1394. mul_3 = u(-mu) * Fperp(mu, nu)
  1395. assert (mul_3.data == Array([0, 0, 0, 0]))
  1396. # Test the deleter
  1397. del g.data
  1398. def test_issue_11020_TensAdd_data():
  1399. with warns_deprecated_sympy():
  1400. Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='i', dim=2)
  1401. Lorentz.data = [-1, 1]
  1402. a, b, c, d = tensor_indices('a, b, c, d', Lorentz)
  1403. i0, i1 = tensor_indices('i_0:2', Lorentz)
  1404. # metric tensor
  1405. g = TensorHead('g', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
  1406. g.data = Lorentz.data
  1407. u = TensorHead('u', [Lorentz])
  1408. u.data = [1, 0]
  1409. add_1 = g(b, c) * g(d, i0) * u(-i0) - g(b, c) * u(d)
  1410. assert (add_1.data == Array.zeros(2, 2, 2))
  1411. # Now let us replace index `d` with `a`:
  1412. add_2 = g(b, c) * g(a, i0) * u(-i0) - g(b, c) * u(a)
  1413. assert (add_2.data == Array.zeros(2, 2, 2))
  1414. # some more tests
  1415. # perp is tensor orthogonal to u^\mu
  1416. perp = u(a) * u(b) + g(a, b)
  1417. mul_1 = u(-a) * perp(a, b)
  1418. assert (mul_1.data == Array([0, 0]))
  1419. mul_2 = u(-c) * perp(c, a) * perp(d, b)
  1420. assert (mul_2.data == Array.zeros(2, 2, 2))
  1421. def test_index_iteration():
  1422. L = TensorIndexType("Lorentz", dummy_name="L")
  1423. i0, i1, i2, i3, i4 = tensor_indices('i0:5', L)
  1424. L0 = tensor_indices('L_0', L)
  1425. L1 = tensor_indices('L_1', L)
  1426. A = TensorHead("A", [L, L])
  1427. B = TensorHead("B", [L, L], TensorSymmetry.fully_symmetric(2))
  1428. e1 = A(i0,i2)
  1429. e2 = A(i0,-i0)
  1430. e3 = A(i0,i1)*B(i2,i3)
  1431. e4 = A(i0,i1)*B(i2,-i1)
  1432. e5 = A(i0,i1)*B(-i0,-i1)
  1433. e6 = e1 + e4
  1434. assert list(e1._iterate_free_indices) == [(i0, (1, 0)), (i2, (1, 1))]
  1435. assert list(e1._iterate_dummy_indices) == []
  1436. assert list(e1._iterate_indices) == [(i0, (1, 0)), (i2, (1, 1))]
  1437. assert list(e2._iterate_free_indices) == []
  1438. assert list(e2._iterate_dummy_indices) == [(L0, (1, 0)), (-L0, (1, 1))]
  1439. assert list(e2._iterate_indices) == [(L0, (1, 0)), (-L0, (1, 1))]
  1440. assert list(e3._iterate_free_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))]
  1441. assert list(e3._iterate_dummy_indices) == []
  1442. assert list(e3._iterate_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))]
  1443. assert list(e4._iterate_free_indices) == [(i0, (0, 1, 0)), (i2, (1, 1, 0))]
  1444. assert list(e4._iterate_dummy_indices) == [(L0, (0, 1, 1)), (-L0, (1, 1, 1))]
  1445. assert list(e4._iterate_indices) == [(i0, (0, 1, 0)), (L0, (0, 1, 1)), (i2, (1, 1, 0)), (-L0, (1, 1, 1))]
  1446. assert list(e5._iterate_free_indices) == []
  1447. assert list(e5._iterate_dummy_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))]
  1448. assert list(e5._iterate_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))]
  1449. assert list(e6._iterate_free_indices) == [(i0, (0, 0, 1, 0)), (i2, (0, 1, 1, 0)), (i0, (1, 1, 0)), (i2, (1, 1, 1))]
  1450. assert list(e6._iterate_dummy_indices) == [(L0, (0, 0, 1, 1)), (-L0, (0, 1, 1, 1))]
  1451. assert list(e6._iterate_indices) == [(i0, (0, 0, 1, 0)), (L0, (0, 0, 1, 1)), (i2, (0, 1, 1, 0)), (-L0, (0, 1, 1, 1)), (i0, (1, 1, 0)), (i2, (1, 1, 1))]
  1452. assert e1.get_indices() == [i0, i2]
  1453. assert e1.get_free_indices() == [i0, i2]
  1454. assert e2.get_indices() == [L0, -L0]
  1455. assert e2.get_free_indices() == []
  1456. assert e3.get_indices() == [i0, i1, i2, i3]
  1457. assert e3.get_free_indices() == [i0, i1, i2, i3]
  1458. assert e4.get_indices() == [i0, L0, i2, -L0]
  1459. assert e4.get_free_indices() == [i0, i2]
  1460. assert e5.get_indices() == [L0, L1, -L0, -L1]
  1461. assert e5.get_free_indices() == []
  1462. def test_tensor_expand():
  1463. L = TensorIndexType("L")
  1464. i, j, k = tensor_indices("i j k", L)
  1465. L_0 = TensorIndex("L_0", L)
  1466. A, B, C, D = tensor_heads("A B C D", [L])
  1467. assert isinstance(Add(A(i), B(i)), TensAdd)
  1468. assert isinstance(expand(A(i)+B(i)), TensAdd)
  1469. expr = A(i)*(A(-i)+B(-i))
  1470. assert expr.args == (A(L_0), A(-L_0) + B(-L_0))
  1471. assert expr != A(i)*A(-i) + A(i)*B(-i)
  1472. assert expr.expand() == A(i)*A(-i) + A(i)*B(-i)
  1473. assert str(expr) == "A(L_0)*(A(-L_0) + B(-L_0))"
  1474. expr = A(i)*A(j) + A(i)*B(j)
  1475. assert str(expr) == "A(i)*A(j) + A(i)*B(j)"
  1476. expr = A(-i)*(A(i)*A(j) + A(i)*B(j)*C(k)*C(-k))
  1477. assert expr != A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k)
  1478. assert expr.expand() == A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k)
  1479. assert str(expr) == "A(-L_0)*(A(L_0)*A(j) + A(L_0)*B(j)*C(L_1)*C(-L_1))"
  1480. assert str(expr.canon_bp()) == 'A(j)*A(L_0)*A(-L_0) + A(L_0)*A(-L_0)*B(j)*C(L_1)*C(-L_1)'
  1481. expr = A(-i)*(2*A(i)*A(j) + A(i)*B(j))
  1482. assert expr.expand() == 2*A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)
  1483. expr = 2*A(i)*A(-i)
  1484. assert expr.coeff == 2
  1485. expr = A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k)))
  1486. assert str(expr) == "A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k)))"
  1487. assert str(expr.expand()) == "A(i)*B(j)*C(k) + A(i)*C(j)*A(k) + A(i)*C(j)*D(k)"
  1488. assert isinstance(TensMul(3), TensMul)
  1489. tm = TensMul(3).doit()
  1490. assert tm == 3
  1491. assert isinstance(tm, Integer)
  1492. p1 = B(j)*B(-j) + B(j)*C(-j)
  1493. p2 = C(-i)*p1
  1494. p3 = A(i)*p2
  1495. assert p3.expand() == A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j)
  1496. expr = A(i)*(B(-i) + C(-i)*(B(j)*B(-j) + B(j)*C(-j)))
  1497. assert expr.expand() == A(i)*B(-i) + A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j)
  1498. expr = C(-i)*(B(j)*B(-j) + B(j)*C(-j))
  1499. assert expr.expand() == C(-i)*B(j)*B(-j) + C(-i)*B(j)*C(-j)
  1500. def test_tensor_alternative_construction():
  1501. L = TensorIndexType("L")
  1502. i0, i1, i2, i3 = tensor_indices('i0:4', L)
  1503. A = TensorHead("A", [L])
  1504. x, y = symbols("x y")
  1505. assert A(i0) == A(Symbol("i0"))
  1506. assert A(-i0) == A(-Symbol("i0"))
  1507. raises(TypeError, lambda: A(x+y))
  1508. raises(ValueError, lambda: A(2*x))
  1509. def test_tensor_replacement():
  1510. L = TensorIndexType("L")
  1511. L2 = TensorIndexType("L2", dim=2)
  1512. i, j, k, l = tensor_indices("i j k l", L)
  1513. A, B, C, D = tensor_heads("A B C D", [L])
  1514. H = TensorHead("H", [L, L])
  1515. K = TensorHead("K", [L]*4)
  1516. expr = H(i, j)
  1517. repl = {H(i,-j): [[1,2],[3,4]], L: diag(1, -1)}
  1518. assert expr._extract_data(repl) == ([i, j], Array([[1, -2], [3, -4]]))
  1519. assert expr.replace_with_arrays(repl) == Array([[1, -2], [3, -4]])
  1520. assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, -2], [3, -4]])
  1521. assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, 2], [3, 4]])
  1522. assert expr.replace_with_arrays(repl, [Symbol("i"), -Symbol("j")]) == Array([[1, 2], [3, 4]])
  1523. assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, -2], [-3, 4]])
  1524. assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, 2], [-3, -4]])
  1525. assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [-2, -4]])
  1526. assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [-2, 4]])
  1527. assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [2, 4]])
  1528. assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [2, -4]])
  1529. # Test stability of optional parameter 'indices'
  1530. assert expr.replace_with_arrays(repl) == Array([[1, -2], [3, -4]])
  1531. expr = H(i,j)
  1532. repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)}
  1533. assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]]))
  1534. assert expr.replace_with_arrays(repl) == Array([[1, 2], [3, 4]])
  1535. assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, 2], [3, 4]])
  1536. assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, -2], [3, -4]])
  1537. assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, 2], [-3, -4]])
  1538. assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, -2], [-3, 4]])
  1539. assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [2, 4]])
  1540. assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [2, -4]])
  1541. assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [-2, -4]])
  1542. assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [-2, 4]])
  1543. # Not the same indices:
  1544. expr = H(i,k)
  1545. repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)}
  1546. assert expr._extract_data(repl) == ([i, k], Array([[1, 2], [3, 4]]))
  1547. expr = A(i)*A(-i)
  1548. repl = {A(i): [1,2], L: diag(1, -1)}
  1549. assert expr._extract_data(repl) == ([], -3)
  1550. assert expr.replace_with_arrays(repl, []) == -3
  1551. expr = K(i, j, -j, k)*A(-i)*A(-k)
  1552. repl = {A(i): [1, 2], K(i,j,k,l): Array([1]*2**4).reshape(2,2,2,2), L: diag(1, -1)}
  1553. assert expr._extract_data(repl)
  1554. expr = H(j, k)
  1555. repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)}
  1556. raises(ValueError, lambda: expr._extract_data(repl))
  1557. expr = A(i)
  1558. repl = {B(i): [1, 2]}
  1559. raises(ValueError, lambda: expr._extract_data(repl))
  1560. expr = A(i)
  1561. repl = {A(i): [[1, 2], [3, 4]]}
  1562. raises(ValueError, lambda: expr._extract_data(repl))
  1563. # TensAdd:
  1564. expr = A(k)*H(i, j) + B(k)*H(i, j)
  1565. repl = {A(k): [1], B(k): [1], H(i, j): [[1, 2],[3,4]], L:diag(1,1)}
  1566. assert expr._extract_data(repl) == ([k, i, j], Array([[[2, 4], [6, 8]]]))
  1567. assert expr.replace_with_arrays(repl, [k, i, j]) == Array([[[2, 4], [6, 8]]])
  1568. assert expr.replace_with_arrays(repl, [k, j, i]) == Array([[[2, 6], [4, 8]]])
  1569. expr = A(k)*A(-k) + 100
  1570. repl = {A(k): [2, 3], L: diag(1, 1)}
  1571. assert expr.replace_with_arrays(repl, []) == 113
  1572. ## Symmetrization:
  1573. expr = H(i, j) + H(j, i)
  1574. repl = {H(i, j): [[1, 2], [3, 4]]}
  1575. assert expr._extract_data(repl) == ([i, j], Array([[2, 5], [5, 8]]))
  1576. assert expr.replace_with_arrays(repl, [i, j]) == Array([[2, 5], [5, 8]])
  1577. assert expr.replace_with_arrays(repl, [j, i]) == Array([[2, 5], [5, 8]])
  1578. ## Anti-symmetrization:
  1579. expr = H(i, j) - H(j, i)
  1580. repl = {H(i, j): [[1, 2], [3, 4]]}
  1581. assert expr.replace_with_arrays(repl, [i, j]) == Array([[0, -1], [1, 0]])
  1582. assert expr.replace_with_arrays(repl, [j, i]) == Array([[0, 1], [-1, 0]])
  1583. # Tensors with contractions in replacements:
  1584. expr = K(i, j, k, -k)
  1585. repl = {K(i, j, k, -k): [[1, 2], [3, 4]]}
  1586. assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]]))
  1587. expr = H(i, -i)
  1588. repl = {H(i, -i): 42}
  1589. assert expr._extract_data(repl) == ([], 42)
  1590. expr = H(i, -i)
  1591. repl = {
  1592. H(-i, -j): Array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]),
  1593. L: Array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]),
  1594. }
  1595. assert expr._extract_data(repl) == ([], 4)
  1596. # Replace with array, raise exception if indices are not compatible:
  1597. expr = A(i)*A(j)
  1598. repl = {A(i): [1, 2]}
  1599. raises(ValueError, lambda: expr.replace_with_arrays(repl, [j]))
  1600. # Raise exception if array dimension is not compatible:
  1601. expr = A(i)
  1602. repl = {A(i): [[1, 2]]}
  1603. raises(ValueError, lambda: expr.replace_with_arrays(repl, [i]))
  1604. # TensorIndexType with dimension, wrong dimension in replacement array:
  1605. u1, u2, u3 = tensor_indices("u1:4", L2)
  1606. U = TensorHead("U", [L2])
  1607. expr = U(u1)*U(-u2)
  1608. repl = {U(u1): [[1]]}
  1609. raises(ValueError, lambda: expr.replace_with_arrays(repl, [u1, -u2]))
  1610. def test_rewrite_tensor_to_Indexed():
  1611. L = TensorIndexType("L", dim=4)
  1612. A = TensorHead("A", [L]*4)
  1613. B = TensorHead("B", [L])
  1614. i0, i1, i2, i3 = symbols("i0:4")
  1615. L_0, L_1 = symbols("L_0:2")
  1616. a1 = A(i0, i1, i2, i3)
  1617. assert a1.rewrite(Indexed) == Indexed(Symbol("A"), i0, i1, i2, i3)
  1618. a2 = A(i0, -i0, i2, i3)
  1619. assert a2.rewrite(Indexed) == Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3))
  1620. a3 = a2 + A(i2, i3, i0, -i0)
  1621. assert a3.rewrite(Indexed) == \
  1622. Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3)) +\
  1623. Sum(Indexed(Symbol("A"), i2, i3, L_0, L_0), (L_0, 0, 3))
  1624. b1 = B(-i0)*a1
  1625. assert b1.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_0)*Indexed(Symbol("A"), L_0, i1, i2, i3), (L_0, 0, 3))
  1626. b2 = B(-i3)*a2
  1627. assert b2.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_1)*Indexed(Symbol("A"), L_0, L_0, i2, L_1), (L_0, 0, 3), (L_1, 0, 3))
  1628. def test_tensor_matching():
  1629. """
  1630. Test match and replace with the pattern being a WildTensor or a WildTensorIndex
  1631. """
  1632. R3 = TensorIndexType('R3', dim=3)
  1633. p, q, r = tensor_indices("p q r", R3)
  1634. a,b,c = symbols("a b c", cls = WildTensorIndex, tensor_index_type=R3, ignore_updown=True)
  1635. g = WildTensorIndex("g", R3)
  1636. eps = R3.epsilon
  1637. K = TensorHead("K", [R3])
  1638. V = TensorHead("V", [R3])
  1639. A = TensorHead("A", [R3, R3])
  1640. W = WildTensorHead('W', unordered_indices=True)
  1641. U = WildTensorHead('U')
  1642. assert a.matches(q) == {a:q}
  1643. assert a.matches(-q) == {a:-q}
  1644. assert g.matches(-q) == None
  1645. assert g.matches(q) == {g:q}
  1646. assert eps(p,-a,a).matches( eps(p,q,r) ) == None
  1647. assert eps(p,-b,a).matches( eps(p,q,r) ) == {a: r, -b: q}
  1648. assert eps(p,-q,r).replace(eps(a,b,c), 1) == 1
  1649. assert W().matches( K(p)*V(q) ) == {W(): K(p)*V(q)}
  1650. assert W(a).matches( K(p) ) == {a:p, W(a).head: _WildTensExpr(K(p))}
  1651. assert W(a,p).matches( K(p)*V(q) ) == {a:q, W(a,p).head: _WildTensExpr(K(p)*V(q))}
  1652. assert W(p,q).matches( K(p)*V(q) ) == {W(p,q).head: _WildTensExpr(K(p)*V(q))}
  1653. assert W(p,q).matches( A(q,p) ) == {W(p,q).head: _WildTensExpr(A(q, p))}
  1654. assert U(p,q).matches( A(q,p) ) == None
  1655. assert ( K(q)*K(p) ).replace( W(q,p), 1) == 1
  1656. def test_TensMul_subs():
  1657. """
  1658. Test subs and xreplace in TensMul. See bug #24337
  1659. """
  1660. R3 = TensorIndexType('R3', dim=3)
  1661. p, q, r = tensor_indices("p q r", R3)
  1662. K = TensorHead("K", [R3])
  1663. V = TensorHead("V", [R3])
  1664. A = TensorHead("A", [R3, R3])
  1665. C0 = TensorIndex(R3.dummy_name + "_0", R3, True)
  1666. assert ( K(p)*V(r)*K(-p) ).subs({V(r): K(q)*K(-q)}) == K(p)*K(q)*K(-q)*K(-p)
  1667. assert ( K(p)*V(r)*K(-p) ).xreplace({V(r): K(q)*K(-q)}) == K(p)*K(q)*K(-q)*K(-p)
  1668. assert ( K(p)*V(r) ).xreplace({p: C0, V(r): K(q)*K(-q)}) == K(C0)*K(q)*K(-q)
  1669. assert ( K(p)*A(q,-q)*K(-p) ).doit() == K(p)*A(q,-q)*K(-p)
  1670. def test_tensorsymmetry():
  1671. with warns_deprecated_sympy():
  1672. tensorsymmetry([1]*2)
  1673. def test_tensorhead():
  1674. with warns_deprecated_sympy():
  1675. tensorhead('A', [])
  1676. def test_TensorType():
  1677. with warns_deprecated_sympy():
  1678. sym2 = TensorSymmetry.fully_symmetric(2)
  1679. Lorentz = TensorIndexType('Lorentz')
  1680. S2 = TensorType([Lorentz]*2, sym2)
  1681. assert isinstance(S2, TensorType)
  1682. def test_dummy_fmt():
  1683. with warns_deprecated_sympy():
  1684. TensorIndexType('Lorentz', dummy_fmt='L')